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ABSTRACT 

Alterations to Louisiana’s river systems and local hydrology have resulted in reduced 

freshwater, sediment, and nutrient inputs into wetland landscapes, causing significant negative 

impacts on marsh productivity and stability. To combat these losses many restoration projects have 

been constructed or planned throughout coastal Louisiana. Typical goals of wetland restoration 

efforts are to conserve, create, or enhance wetland form, and to achieve wetland function that 

approaches natural conditions. Failure to adequately maintain wetland elevation and hydrology can 

have serious implications on sedimentation and vegetation processes, which significantly reduces the 

likelihood of reaching structural and functional targets. Measures of wetland condition have been 

used to monitor and assess project performance, resilience, and adaptive management needs. This 

study assessed the use of remotely sensed and in situ data, in addition to landscape metrics (i.e., 

marsh area, edge density, and aggregation index) and vegetative indices (i.e., vegetation cover, 

normalized difference vegetative index, and floristic quality index) to evaluate changes and trends in 

restored wetland condition, function, and resilience, and compare those to naturally occurring 

reference wetlands. Results show that restoration measures (i.e., hydrologic restoration, wetland 

restoration, and beneficial use of dredge material) significantly increased wetland function (i.e., 

vegetation productivity, carbon sequestration, floristic quality), stability (i.e., increased marsh area, 

reduced loss rates, and increased spatial integrity), and resilience to disturbance events. Though many 

structural and functional measures (i.e., vegetation and landscape indices) of restored wetlands 

rapidly achieved equivalency to reference wetlands (approximately 3 to 5 years after construction), 

others, like some fundamental soil functions (i.e., carbon accumulation) required several decades to 

reach equivalency. These results demonstrated the importance of river connectivity and 

sedimentation for wetland productivity and overall spatial integrity. These studies show remotely 

sensing data and applications can significantly supplement traditional methods and provide critical 
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knowledge elements for more efficient inventorying and monitoring of wetland resources, forecasting 

of resource condition and stability, and formulating adaptive management strategies. 
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CHAPTER 1 – SEDIMENT IN A DEGRADING ECOSYSTEM: A SYNTHESIS 
 
 
INTRODUCTION 

Background 

Since the 1930s, Louisiana’s coastal landscapes have experienced dramatic loss of wetlands 

(Day et al. 2000; Couvillion et al. 2011; Suir et al. 2014). Between 1932 and 2010, approximately 

4,880 square kilometers (km2) of Louisiana’s 19,544 km2 of wetlands were lost, and an additional 

842 km2 are expected to be lost by the year 2050 (Barras et al. 2004; Couvillion et al. 2011). These 

wetland losses are due in large part to a complex interaction of spatial and temporal factors, including 

reduced riverine inputs, flood control measures, altered wetland hydrology, saltwater intrusion, wave 

erosion, and reduced river sediment load (Day et al. 2000). These factors also have significant 

implications on long-term wetland resilience and function, as well as ecosystem goods and services 

(Craft et al. 2009). At risk are the wetland-derived benefits that range from regulating services (i.e., 

floods, drought, and wetland degradation), supporting services (i.e., soil formation and nutrient 

cycling), provisioning services (i.e., food and freshwater); cultural services (i.e., recreational and 

aesthetics), to ecosystem services (i.e., high biological productivity and critical habitat) (Millennium 

Ecosystem Assessment 2003; United States Army Corps of Engineers [USACE] 2013). 

The stability of coastal ecosystems and wetland landscapes remains a function of the balance 

between sedimentation, subsidence, sea-level rise, and episodic events (Mitsch and Gosselink 2000; 

Steyer et al. 2007; Barras 2009). In Louisiana, channel training and flood protection measures have 

offset this balance by depriving adjacent landscapes of the sediment that was historically provided 

during seasonal overbank flooding and other episodic events (i.e., storm surge). Even where 

hydrologic connectivity between rivers and wetlands remain, the potential for land building through 

naturally delivered sediment is limited due to the Mississippi River’s progressively declining 
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sediment loads (Thorne et al. 2008; Allison et al. 2012). As a consequence, ecosystem uses of 

dredged sediments present increasingly valuable applications for re-introduction of sediments into 

degrading and subsiding landscapes. Though previous studies have evaluated wetland loss, goods, 

and services, few have evaluated and compared wetland structure, function, and resilience as related 

to sediment delivery (naturally or mechanically).   

Mississippi River Discharge and Sediment Yield 

The Mississippi River basin, which consists of thirty-one States (41% of the continental 

United States) and two Canadian Provinces, drains approximately 3.1 million km2 (Figure 1.1) 

(USACE 2004; National Park Service 2018). This drainage basin supplies the Mississippi River with 

large volumes of sediment and water, ranking it eighth worldwide in average annual suspended load 

(more than 200,000,000 metric tons), ninth worldwide in discharge (approximately 16,000 cubic 

meters per second [m3 s-1]), and first in North America in sediment load and discharge (Holeman 

1968; Thorne et al. 2008). A sediment budget of the lower Mississippi River shows prior to human 

modifications the upper portion of the Mississippi River basin acted as the dominant source of 

sediment (bank caving was single primary source), and the lower River basin operated as a sediment 

sink (Kesel et al. 1992). The sediment budget showed a downriver fining of sediments, with a 

decrease in mean sediment diameter from approximately 3.6 mm near Cairo, Illinois to 0.1 mm at the 

mouth of the river (Kesel et al. 1992). This fining in the lower Mississippi River system is largely 

caused by long- and short-term storage of sediment, accounting for 24 and 38 percent of the total 

sediment load, respectively (Kesel et al. 1992).  

Sediment Transport and Flux 

The majority of Mississippi River system sediments that are not confined to long-term storage 

are eventually transported to the Gulf of Mexico where the coarser fragments are deposited near the 

shore and the finer particles at a distance (Brady and Weil 1999). The transport and deposition of 
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Mississippi River sediments at low elevations create intertidal flats that ultimately transition to 

vegetated deltas. Over time, delta formation and land building constrains river flow and triggers a 

shift in river course to a path of least resistance.  

 

 
 

Figure 1.1. Primary rivers and drainage area of the Mississippi River basin. Courtesy of 
National Park Service (2018). 

 

For millennia the unrestrained Mississippi River changed courses, building multiple delta 

lobes that collectively resulted in the formation of approximately 1.6 million hectares of coastal 

Louisiana wetlands (USACE 2004). Figure 1.2 shows the approximate location and extent of six 

historical inactive delta lobes and two active lobes (Balize and Atchafalaya) in south Louisiana. For 

many thousands of years, the Mississippi River and distributaries have delivered sediments that were 

vital for delta formation. This delta building process resulted in the creation of Louisiana’s Deltaic 

Plain.  
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Figure 1.2. Chronology of Mississippi River delta formation. Modified from Tasa Graphic 
Arts, Inc. (2002). 

 

In addition to delta formation, bars and beaches along the Louisiana western coast have been 

formed by the longshore transport and marine reworking of terrigenous material (Figure 1.3) (Selley 

1996; McBride et al. 2007). These thin sand- and shell-rich “cheniers” make up a complex 

geomorphic area comprised of transgressive (traditional cheniers), regressive (beach ridges), and 

laterally accreting (spits) ridges (McBride et al. 2007). Though the Chenier Plain is largely formed by 

Mississippi River sediment, the evolution and response of ridges are also driven by the local 

reworking of sediment, and the trapping and stabilization of sediment at tidal entrances (McBride et 

al. 2007). The morphology of the Chenier (based on the French word for “oak tree”) Plain is the 

primary result of longshore transport and from two major processes: an intensive interaction between 

high-energy forces related to waves, tides, wind, and currents; and the constantly changing sea level 

over geologic time (Kennett 1981).  
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Figure 1.3. Geomorphology of the Louisiana Chenier Plain. Courtesy of McBride et al. 
(2007). 

 

Wetland Formation and Function 

Coastal wetland development and function is typically regulated by a variety of biotic and 

abiotic factors. Wetlands in the Mississippi River Delta were established primarily via Mississippi 

River sediment deposition over the past 6,000 years (Nyman et al. 1990). Across their lifespan, these 

wetlands undergo three phases of growth and abandonment, (1) rapid growth with increasing or 

stable river discharge, (2) moderate stability with waning discharge, and (3) abandonment and 

subsequent subsidence-dominated vertical development (Roberts 1997). Initial and rapid sediment 

infilling increases substrate elevation, promoting vegetation and wetland formation, which further 

increases wetland elevation through increasing mineral sediment deposition (via sediment trapping) 

and plant organic matter accumulation (Cahoon et al. 2011).  

Wetlands contribute to a number of significant goods and services, including flood control, 

water filtering and storage, food supply, shoreline and storm protection, cultural value, recreation, 

critical habitat, and regulation of major chemical, physical, and biological processes (Pratolongo et 

al. 2009). Figure 1.4 depicts the relative contributions of the ecosystem goods and services provided 

by wetland sediments along a land-sea gradient (Wall et al. 2004). Specifically, sediments in coastal 

ecosystems contribute to the regulation of major biogeochemical cycles; the bioremediation of wastes 

and pollutants; erosion control; the retention and delivery of nutrients to plants and algae; the 
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generation and renewal of soil structure and fertility; the modification of the hydrological cycle; the 

regulation of gases; the modification of anthropogenically driven global change; plant production; 

and landscape heterogeneity and stability (Wall et al. 2004). 

 

 
 

Figure 1.4. Importance of terrestrial, freshwater, and marine sediments for providing goods and 
services. Courtesy of Wall et al. (2004). 

 

Wetland Loss 

Major episodic flooding of colonized and developed lands along the Mississippi River system 

has resulted in the construction of levees and other flood protection measures. The purpose of these 

measures are to reduce flooding events by training the rivers flow onto and over the continental shelf. 

Though these measures have successfully reduced the number of flooding events, the levees have 

also significantly reduced riverine connectivity to coastal marshes, thereby depriving many of these 

wetland landscapes of vital freshwater and sediment inputs (Mississippi River Delta Science and 

Engineering Special Team [MRDSEST] 2012). These flood protection measures have also resulted in 

the rapid decline in sediment load during the last century (Figure 1.5). These sediment reductions 
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were primarily driven by the flushing of previously stored sediments (due to channelization), 

increased sediment trapping by river training structures, and reduced erosion due to bank protection 

structures and soil conservation measures in the upper Mississippi River system (Meade et al. 2010). 

During this period the Mississippi River basin shifted from a transport-limited to a supply-limited 

system (Meade et al. 2010). These declining suspended loads (80 percent decrease since the middle 

of the nineteenth century), in addition to the flood protection measures, have resulted in significant 

reductions in the unconfined and overbank distributions of Mississippi River sediment (Kesel 1988, 

1989). 

 

 
 

Figure 1.5. Long-term changes in annual load and discharge in the Mississippi River from 
multiple stations. Modified from Thorne et al. (2008). 

 

The stability and productivity of wetland landscapes are largely driven by salinity, 

subsidence, climate change, episodic events, and nutrient and sediment availability (Mulholland et al. 

1997; DeLaune et al. 2005; Steyer et al. 2008; Barras 2009). Sediments are critical inputs that are 

necessary for maintaining wetland platform elevation and countering subsidence and other erosional 

processes. Therefore, eliminating or reducing these key riverine inputs (i.e., reduced sediment load 
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and delivery) from wetland landscapes can have significant long-term effects on marsh productivity 

and stability. The recent reduction in Mississippi River sediment load and distribution is a major 

contributor to the approximately 4,880 km2 of wetlands that have been lost since the Mississippi 

River system levees were reinforced after the major flood of 1927 (Figure 1.6) (Couvillion et al. 

2011). 

 

 
 

Figure 1.6. Land area change in coastal Louisiana from 1932 to 2010. Modified from 
Couvillion et al. (2008). 

 

Wetland Restoration 

In the 1970s, small- and basin-scale wetland management and restoration plans were initiated 

to counteract Louisiana’s wetland losses (Gagliano et al. 1973). However, not until the authorization 

of the Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA) in 1990 were the large 

efforts to restore Louisiana’s wetlands initiated (Williams et al. 1997). Two of the primary restoration 

techniques promoted and utilized in coastal Louisiana have been marsh creation using dredged 
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material and reestablishing river connectivity to wetland landscapes though freshwater and sediment 

diversions. Though the ecological benefits of these restoration techniques have long been assumed 

(and are often the target of restoration activities), the short- and long-term effects of those techniques, 

and the ability to create wetlands that mimic natural processes, are uncertain (MRDSEST 2012).  

The primary purpose of wetland restoration through placed or diverted sediments is to 

increase spatial integrity by converting open-water features to sub-aerial habitat or to increase 

ecosystem stability by nourishing deteriorating wetlands. These restoration applications remain 

highly promoted and implemented, and have resulted in more than 2,000 man-made islands, 100 

marsh creation projects, and nearly 1,000 habitat development projects in the United States (Brandon 

and Price 2007). However, necessary monitoring and assessments of restoration benefits and 

performance are often hindered by budget and resource constraints. As a result, knowledge gaps 

persist about the short- and long-term ecological evolution of restored and nourished sites, potentially 

resulting in ad-hoc and inefficient management of sediment and ecosystem resources. Therefore, a 

systematic approach to establishing ecosystem and project targets, quantifying environmental 

benefits, and evaluating project performance and resilience is necessary for maximizing the 

application and adaptive management of sediment for wetland creation and nourishment. 

RESEARCH 

Study Area – Louisiana Coastal Wetlands 

This study explores the impacts of sediment introduction on plant community composition, 

species distributions, productivity, and wetland structure and resilience in degrading coastal 

Louisiana landscapes. The study was conducted in multiple parts and evaluations, across multiple 

sites ranging from project to landscape-scale (Figure 1.7). The largest assessment unit, the Louisiana 

coastal zone, encompasses approximately 14,000 km2 and consists of Louisiana wetlands that are 

influenced by coastal processes. This study also assessed the impacts of sediment additions to 
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wetlands within the northern Chandeleur Islands and the Sabine Refuge (Figure 1.7). The northern 

Chandeleur barrier island chain is located approximately 96 kilometers east of New Orleans, 

Louisiana. The northern island arc has experienced a long-term reduction in sand volume, which has 

resulted in rapid erosion of island features (due primarily to hurricane impacts) and the inability to 

maintain many of its subaerial features (US Army Corps of Engineers 2012). The Sabine Refuge 

Marsh Creation project and reference areas, consist primarily of intermediate and brackish wetlands 

that are located west of the Calcasieu Ship Channel near Hackberry, Louisiana (Figure 1.7). This 

area, which was severely impacted by hurricanes and canal building, experienced significant 

conversion from wetlands to open water between 1956 and 1978 (Miller 2014). 

 

 
 

Figure 1.7. Location Map of study sites and components. 
 

Research Objectives 

In recent decades recognition by coastal resource managers and scientists about the ecological 

value of placed or diverted river sediments has elevated stakeholder dialogue, planning, and actions 

on identifying and pursuing a wider range of sediment applications. Placed or diverted sediments, 

which provide abatement to ongoing subsidence, erosion, and sediment and nutrient deprivation, have 
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been the basis of many ecosystem restoration strategies in coastal wetlands. Though the ecosystem 

benefits associated with these applications are generally assumed, the short- and long-term 

monitoring necessary to quantify and validate those benefits have focused primarily on landscape 

form (areal extent and elevation), and less on productivity, function, and resilience. Understanding 

the geomorphic factors and ecological processes that govern wetland creation and nourishment 

applications will increase predictive and adaptive management capabilities. For ecosystem restoration 

through sediment diversion or placement to remain a viable long-term solution, the monitoring of 

existing sites is essential for assessing the ability of restoration measures to provide expected benefits 

and satisfy the needs defined by coastal wetland stewards and stakeholders. The overarching goal of 

this study was to gain an improved understanding of the effects of sediment introduction into wetland 

systems and the factors influencing the establishment, function, evolution, and resilience of restored 

wetland vegetation communities. 

Alterations to Louisiana’s river systems and local hydrology have resulted in reduced 

freshwater, sediment, and nutrient inputs to wetland landscapes, causing significant negative impacts 

on marsh productivity and stability. Therefore, Chapter 2 considered regional- and basin-scale 

impacts of river connectivity and sediment availability on wetland productivity. Satellite data were 

used in conjunction with river discharge, river sediment concentration, and wetland accretion data to 

evaluate correlations between river connectivity and wetland productivity. Chapter 2 also linked 

wetland area, configuration, and productivity with river connectivity to provide an enhanced 

understanding of river and sediment importance for wetland stability and restoration. 

Louisiana’s chronic wetland deterioration has also resulted in massive soil organic matter loss 

and subsequent carbon release through oxidation (DeLaune and White 2011; Williams 1995). To 

combat these losses, and reestablish ecosystem function, goods, and services, many restoration 

projects have been constructed or planned throughout coastal Louisiana. Chapter 3 used an 
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exceptionally large data set to derive carbon accumulation rates from key soil characteristics and 

processes, and assessed and compared bulk density, organic matter, total carbon, vertical accretion 

(short- and longer-term), and carbon accumulation rates across time (chronosequence) and space (i.e., 

coastwide, watershed basins, and vegetation zones).  

As part of the emergency response plan, sand berms were constructed along sensitive barrier 

islands to reduce impacts from the Deepwater Horizon oil spill. Chapter 4 evaluated the effects of 

redistributed berm sediments on island elevation, habitat, productivity, and floristic quality. A 

Geographic Information System (GIS) and remote sensing techniques were used to evaluate the 

evolution and redistribution of berm sediment within the Chandeleur Island system and assess the 

impacts of redistributed berm sediment on existing and new island features.  

Restoration efforts in the United States have created or benefitted large expanses of wetlands. 

Typical goals of wetland restoration efforts are to conserve, create, or enhance wetland form, and to 

achieve wetland function that approaches natural conditions. Failure to adequately maintain restored 

wetland elevation, hydrology, sedimentation, or vegetation can ultimately lead to degrading wetland 

conditions. Measures of wetland condition have been used to monitor and assess project performance, 

resilience, and adaptive management needs. Chapter 5 assessed the use of landscape metrics (i.e., 

wetland area, edge density, and aggregation index) and vegetative indices (i.e., vegetation cover, 

normalized difference vegetative index, and floristic quality index) to evaluate change and trends in 

restored wetland condition, function, and resilience, and compared those to reference wetlands. The 

last chapter (6) is a summary and synthesis of these studies, providing a perspective on the relevance 

of sediment distribution for wetland restoration. 

Integration with Other Research Projects 

These studies are largely funded by the United States Army Corps of Engineers Ecosystem 

Management and Restoration Research Program (EMRRP), Dredging Operations Technical Support 
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Program (DOTS), and Engineering With Nature (EWN) Program, and were developed to provide 

clearer understandings of integrity, resilience, reliability, and sustainability of coastal ecosystem 

restoration projects. These studies utilized data made available through active agreements with the 

National Geospatial-Intelligence Agency, current monitoring systems (Coastwide Reference 

Monitoring System and Coastal Wetlands Planning, Protection and Restoration Act), and previous 

data collection efforts (USACE Beneficial Use Monitoring Program and BP Coastal Wetland 

Vegetation Assessment Data). These studies were also leveraged to acquire resources and in-kind 

support from the Louisiana State University’s Department of Oceanography and Coastal Sciences, 

U.S. Geological Survey’s Wetland and Aquatic Research Center, the U.S. Fish and Wildlife Service, 

and the Louisiana Department of Wildlife and Fisheries.  
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CHAPTER 2 – USE OF THE NORMALIZED DIFFERENCE VEGETATION 
INDEX AND LANDSCAPE METRICS TO ASSESS EFFECTS OF RIVERINE 

INPUTS ON WETLAND PRODUCTIVITY AND STABILITY 
 
 

INTRODUCTION 

Over the last century, flood risk reduction measures constructed in south Louisiana have 

significantly reduced connectivity between the Mississippi River (MR) system and coastal marshes 

(Kesel 1988; Mississippi River Delta Science and Engineering Special Team [MRDSEST] 2012). In 

the rapidly subsiding Mississippi River Delta (active and inactive deltas), this disconnect has resulted 

in sediment and nutrient deficits which have contributed to Louisiana’s 4,877 square kilometers 

(km2) of wetland loss (a net wetland change of -25%) that occurred between 1932 and 2010 (Craig et 

al. 1979; Turner 1997; Kennish 2001; Couvillion et al. 2011). Considering projected rates of relative 

sea-level rise, it is expected that river connectivity and sediment delivery to wetland landscapes will 

become increasingly vital for maintaining and restoring wetland ecosystem structure and functions 

(Jankowski et al. 2017). 

The ecological benefits of a connected ecosystem have long been assumed and are often the 

target of restoration activities. Many of Louisiana’s large-scale wetland restoration plans include river 

connectivity measures (i.e., sediment and nutrient delivery) to promote wetland nourishment and land 

building processes. Numerous small-scale studies have shown an increase in wetland extent, biomass, 

and vigor with increasing freshwater, sediment, and nutrients inputs (Martin et al. 2002; DeLaune et 

al. 2005; McFalls et al. 2010; Roberts et al. 2015; DeLaune et al. 2016). However, the degree to 

which river connectivity (including freshwater and sediment diversion restoration measures) 

influences large-scale wetland productivity and stability in the current Louisiana landscape, is still 

debated (Kearney et al. 2011; MRDSEST 2012; Suir et al. 2014).  
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Hydrologic Connectivity 

Hydrologic connectivity, which is defined as the water-mediated transfer of matter, energy, 

and organisms within or between elements of the hydrologic cycle, is a fundamental component of 

ecological integrity in wetland landscapes (Amoros and Roux 1988; Heiler et al. 1995; Pringle 2003; 

Freeman et al. 2007). Historically, Louisiana has had an abundance of riverine connectivity, 

consisting of a complex network of rivers and distributaries (green lines in Figure 2.1) that traversed 

the Middle Coast and Deltaic Plain (Fisk 1944). However, flood risk reduction features have 

disconnected or restricted those nourishing rivers and bayous from large expanses of wetland 

landscapes. South of the Old River Control Structure near Simmesport, Louisiana, approximately 

2,350 km of federally maintained primary levees have been constructed along the Atchafalaya River 

(AR) and MR. These levees, in addition to declining suspended load (80 percent decrease since the 

middle of the nineteenth century), have resulted in significant reductions in unconfined and overbank 

distribution of sediment (Kesel 1988, 1989). Because only the lower reaches of the AR (lower 48 km) 

and MR (lower 32 km) are un-leveed, the unconfined or overbank distributions of river waters are 

typically discharged onto or over the continental shelf, or into relatively isolated and emaciated 

wetlands (Walker and Rouse 1993; Suir et al. 2014). Some AR waters are transported through 

smaller crevasses and pathways and into nearby Middle Coast and active delta wetlands (Swarzenski 

2003) (Figure 2.1, yellow lines within the Middle Coast region). The Gulf Intracoastal Waterway 

(GIWW) is a primary AR distributary, conveying river water approximately 50 km east and 80 km 

west of the river (Swarzenski 2003). 

Objectives 

The purpose of this study was to assess the impacts of riverine inputs on wetlands by using 

remote sensing data to compare hydrologically connected landscapes (Middle Coast) to areas that are 

either more disconnected (Deltaic Plain) or connect to low volume rivers (Chenier Plain). Ecosystems 
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with higher hydrologic connectivity are assumed to contain more stable and productive wetlands due 

to increased nutrient and sediment delivery. The specific objectives of this study were to: (1) evaluate 

sediment delivery potential and river connectivity; (2) assess correlations between wetland 

productivity and riverine influence; (3) evaluate trends in wetland stability and correlations to 

productivity and river connectivity; and (4) consider the implications of this research on restoration 

activities and adaptive management. 

 

 
 

Figure 2.1. Map depicting the Mississippi River drainage basin (inset), major navigable 
waterways, flood risk reduction levees, historical and recent tributaries, diversions, and 

active deltas in coastal Louisiana (Fisk 1944; Huh et al. 2001; Khalil 2012; Shi and Wang 
2009; USACE 2006). 

 

METHODS  

Study Area and Assessment Units 

The study area, encompassing approximately 14,000 km2, consisted of Louisiana wetlands 

that are influenced by coastal processes (Figure 2.2). To assess potential correlations between 
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wetland productivity and hydro connectivity; while considering seasonal trends, geomorphic settings, 

and episodic impacts; multi-scale assessment units were established. These include (1) 

Geomorphologic Zones (GZ), (2) River Buffers (RB), (3) Watershed Basins (WB), and (4) 

Vegetation by Basin units (VB). The GZ consist of three distinct geomorphologic areas within coastal 

Louisiana. These zones, Chenier Plain, Middle Coast, and Deltaic Plain, have and continue to 

develop under different coastal processes (Figure 2.2). Likewise, the RB units allow for assessments 

of condition and influence, but specifically as a function of distance from primary rivers. The RB 

consist of buffers that radiate at 5 km increments (based on Visser et al. 2003) from each river to a 

total distance of 40 km or to distances of overlapping coverages from neighboring RB.   

The WB units consist of Louisiana drainage basins and subwatersheds (Louisiana Department 

of Environmental Quality [LDEQ] 2004). Since LDEQ basins were delineate based on catchment 

areas of a river (up to its confluence), they serve as suitable units for assessing hydrologic 

connectivity. Since some watershed basins are large and encompass distinct subwatersheds of 

interest, and some are small and adjacent to basins of similar hydrology, several modifications were 

made to the original boundaries. These modifications include the Sabine and Calcasieu basins, which 

are moderately small with similar hydrology, so they were combined to form the Calcasieu/Sabine 

WB unit. Also, since the AR has been shown to substantially influence the western portion of the 

Terrebonne drainage basin (Visser et al. 2003), the basin was divided into the Penchant Marsh unit to 

the west (area receiving AR influence) and the more river-disconnected Terrebonne proper unit to the 

east (Wang et al. 1993). Similarly, since the Pontchartrain drainage basin consisted of hydrologically 

unique subwatersheds, it was divided into the Pontchartrain proper, Breton Sound, and Biloxi Marsh 

units. However, since the Pontchartrain proper subunit consists primarily of forested wetlands and 

swamp, it was excluded from this study. 
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Louisiana’s marshes have traditionally been characterized by their salt tolerance, and grouped 

into Fresh (0 to 0.5 practical salinity [SP]), Intermediate (0.5 to 5 SP), Brackish (5 to 18 SP), and 

Saline (18 to 30 SP) classes (Sasser et al. 2014). The impacts of sediment and nutrient loading on the 

plants in each of these vegetation zones can vary significantly (Visser et al. 2003), therefore, the 

Vegetation by Basin (VB) zones were used to compare productivity for each unique vegetation zone 

by drainage basin combination (Figure 2.2).  

 

 
 

Figure 2.2. Coastal Zone, Watershed Basins, and Vegetation by Basins assessment units in 
coastal Louisiana. White dots represent the locations of the Coastwide Reference 

Monitoring System stations and hatched areas represent the typical sediment plume for the 
Atchafalaya and Mississippi Rivers. 

 

Sediment Availability, Accretion, and Wetland Change 

Assessing correlations between plant productivity and riverine inputs require the 

establishment of sediment delivery potential (Bianchi et al. 2002; Falcini et al. 2012; Roberts et al. 

2015; DeLaune et al. 2016). This includes measurements of instream sediment concentration and 

evaluations of river connectivity to assessment unit wetlands. Mean daily discharge and total 

suspended sediment data for major rivers in Louisiana were extracted from literature or computed 
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using United States Geological Survey (USGS) National Water Information System data (2016). 

Additionally, similar methods to Khan et al. (2013) and Turnipseed et al. (2014) were used to assess 

surface elevation changes within Louisiana’s coastal watershed basins. Elevation and accretion data 

from all available Coastwide Reference Monitoring System (CRMS) stations (n = 292; Figure 2.2) 

were used to evaluate surface elevation changes related to the major river flood events in 2008 and 

2011 (Figure 2.3), as well as the mean elevation changes across the entire CRMS period of collection 

(2008-2016). CRMS surface elevation table (SET) data provide measures of recent sedimentation 

(long-term and flood-related) at higher spatial scale than previous data sets and assessments. The 

extent and density of these CRMS data provide unique opportunities for evaluating cause and effects 

of elevation and elevation change on wetland processes (Jankowski et al. 2017). 

 

 
 

Figure 2.3. Daily stage (meters) for the Mississippi River at New Orleans, Louisiana 
(Rivergages.com accessed 28 Jan 2017). 

 

Another indirect measure of long-term sediment delivery involves analyzing wetland change 

patterns with distance from sediment source, as described in Visser et al. (2003). The percentage of 

wetland change from 1956 to 2008 was calculated with distance from primary Louisiana navigable 

waterways using the RB assessment zones. The 1956 wetland and water data (Barras et al. 1994; 

1:24,000) are based on panchromatic aerial photography-derived habitat data that were generated by 
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the USGS Wetland and Aquatic Research Center (Suir et al. 2011). The 2008 data consist of wetland 

and water classified Landsat Thematic Mapper (TM) imagery that were previously developed for 

hurricane assessments (Barras 2009). The wetland and water classified data were resampled and 

analyzed at a spatial resolution of 28 m. Wetland change percentages were calculated for each buffer 

by subtracting the area of wetland in 1956 from the 2008 area, dividing by the total buffer area, and 

multiplying by 100.  

Remote Sensing 

Since the Normalized Difference Vegetation Index (NDVI) has well established correlations 

to plant characteristics (i.e., photosynthetic activity and biomass; Carle 2013), it was used in 

conjunction with Landsat (28 meter) and MODerate Resolution Imaging Spectroradiometer (MODIS, 

250 m [bands 1-2] and 500 m [bands 3-7]) satellite imagery to assess wetland productivity. Both data 

sets were acquired using the Google Earth Engine (GEE) image service. GEE utilizes radiometrically 

and atmospherically corrected imagery, and aggregation functions (i.e., use of outlier values to 

remove cloud cover from neighboring scenes) to create image composites (Strahler et al. 1999; 

Chander et al. 2009). The GEE service also provides NDVI data that are derived as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑅𝑅𝑅𝑅

 ,  (1) 

where this ratio of the near-infrared band (NIR) and red band (Red) is used to measure an 

ecosystem’s ability to capture solar energy and convert it to organic carbon or biomass (Rouse et al. 

1974; An et al. 2013). All non-marsh features (i.e., forest, developed lands, and water) were excluded 

from each Landsat and MODIS image. Since NDVI values less than zero (< 0) are typical of non-

vegetation features (e.g., water, cloud, impervious surfaces) (Reif et al. 2011; Carle 2013), those were 

also excluded.  
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Landscape Configuration 

Landscape ecology is based on the premise that there are strong correlations between 

landscape pattern (configuration) and ecosystem function (Gustafson 1998). The aggregation index 

(AI) has evolved as a primary metric for linking structure to ecosystem function and is defined as the 

frequency with which different pairs of patch types appear side-by-side (McGarigal 2015), including 

like adjacencies between the same patch-type. Combined with wetland area change, AI provides a 

measure of landscape integrity that is suited for assessing wetland stability and potential correlations 

to plant productivity (Suir et al. 2009; Sun et al. 2015; Couvillion et al. 2016). The class-level 

aggregation index (AI) is derived as:   

𝐴𝐴𝑁𝑁 = � 𝑔𝑔𝑖𝑖,𝑖𝑖
max _𝑔𝑔𝑖𝑖,𝑖𝑖

� (100),                                         (2) 

where gi,i is the number of like adjacencies between pixels of patch type i (class), max_gi,i is the 

maximum number of like adjacencies between pixels of patch type (class) i (He et al. 2000; 

McGarigal 2015). The AI was computed for all assessment units using FRAGSTATS v4.2 

(McGarigal et al. 2012) and a sequential series of 19 wetland and water data sets. Existing wetland 

and water data from 1988 to 2008 (Barras et al. 1994; Hartley et al. 2000; Barras 2005; Morton et al. 

2005; Barras 2009) were supplemented by performing wetland and water classifications on newly 

acquired Landsat TM imagery through the GEE service (2009, 2010, 2011, and 2013). These wetland 

and water classified data were also used to compute the total Class Area (CA) of wetlands within 

each assessment unit. 

Statistical Analysis 

All data sets were transformed and formatted as comma separated values (CSV) files for 

statistical analyses. In order to attain comparability among NDVI for each assessment scale, 

statistical analyses were conducted using Statistical Analysis System software version 9.2 (SAS 

2010). The PROC GLM procedure was used to perform a one-way analysis of variance (ANOVA) 
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and a means separation test (Tukey’s, α = 0.05) to evaluate significance of differences between NDVI 

for each assessment unit. Additionally, a second order polynomial regression with coefficient of 

determination (r2) was used to evaluate correlations between productivity (NDVI) and stability 

(aggregation index) with consideration of hydrologic connectivity. 

RESULTS AND DISCUSSION 

Hydrology 

To assess the impacts of river-borne sediment on wetland productivity and configuration, 

linkages between river and wetlands must be evaluated. This was accomplished by assessing 

sediment source and delivery potential using river discharge, river suspended sediment 

concentrations, and trends in accretion rates and wetland change (with distance from source). Table 

2.1 lists the river flow and suspended sediment concentrations for the primary navigable waterways 

(with related WB) in coastal Louisiana. The mean flows of the MR and AR (combined with Wax 

Lake Outlet) are approximately 16,000 m3s-1 and 6,000 m3s-1, respectively (Sprague et al. 2009; Rego 

et al. 2010). The mean sediment concentration of the MR and AR are approximately 260 milligram 

per liter (mgL-1) and 470 mgL-1, respectively (Rosen and Xu 2013; Thorne et al. 2008). Since 1950, 

the AR has conveyed all of the suspended- and bed-sediment load of the Red River, and 

approximately 35%, 60%, and 30% of the MR’s suspended sediment, bed sediment, and latitude flow 

(all river system water passing through latitudinal plane), respectively (USACE 2004; Hupp et al. 

2008). The remaining primary waterways (excluding the GIWW) have reported mean flows that 

range from 33 to 219 m3s-1, and mean sediment concentrations that range from 17 to 56 mgL-1 (Rosen 

and Xu 2011; LDEQ 2016; USGS 2016) (Table 2.1). The AR and MR are generally one magnitude 

higher in mean total suspended sediment concentration and several magnitudes higher in discharge 

rates than other primary waterways. Suspended sediment concentrations of the AR’s distributaries are 

also higher than most isolated rivers and bayous. This is evident in the GIWW, with mean sediment 
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concentrations of 177 mgL-1 west of Wax Lake Outlet (east of Cypremort Point) and 137 mgL-1 east 

of the AR (west of the Houma Navigation Canal) (Swarzenski 2003).  

 

Table 2.1. Mean daily discharge (flow) and mean total suspended solids (TSS) for primary rivers in 
coastal Louisiana. Modified from Benke and Cushing (2011). 

 

River Basin 

Mean 
Flow 

(m3s-1) 

Mean 
TSS 

(mgL-1) Source 
Sabine Calcasieu/Sabine 219  17 Rosen and Xu 2011 
Calcasieu Calcasieu/Sabine 72  18 Rosen and Xu 2011 
Mermentau Mermentau 82  26 Rosen and Xu 2011 
Vermilion Teche/Vermilion 33  56 Rosen and Xu 2011 
GIWW west of WLO* Vermilion 158 177 Swarzenski 2003 
Atchafalaya/Wax Lake Outlet** Atchafalaya 6,227 469 Rego et al. 2010;  Rosen 

and Xu 2013 
GIWW east of Atchafalaya*** Penchant 156 137 Swarzenski 2003 
Houma Navigation Canal Terrebonne 90  41 LDEQ 2016; USGS 

2016  
Lafourche Barataria 35  27 LDEQ 2016; USGS 

2016 
Mississippi Mississippi 

River 
16,339  259† Sprague et al. 2009, 

Thorne et al. 2008 
* West of the Wax Lake Outlet to Cypremort Point 
** Flow and TSS for Atchafalaya and Wax Lake Outlet combined 
*** East of the Atchafalaya River to the Houma Navigation Canal 
† Mississippi River at Tarbert Landing 

 

Sediment Accumulation 

Figure 2.4, Panel A, illustrates surface elevation change by CRMS station (green and red dots 

represent elevation increases and decreases, respectively) and mean elevation change by WB units 

(polygons) that were computed using pre- (mean surface elevation between October 2010 and April 

2011) and post- (July 2011 to November 2011) 2011 flood data. The darkest green dots and darkest 

polygons represent areas of maximum elevation increases, while dark red dots represent areas of 

maximum decreases. Figure 2.4A shows the majority of the CRMS stations in close proximity to 

larger river outfalls or floodway systems (i.e., Bonnet Carré Spillway, which opened on 9 May 2011 
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to alleviate flooding stress [USACE 2016]) experienced increases in relative surface elevation, while 

those located at greater distances were dominated by decreases in elevation.  

These findings are similar to those by Falcini et al. (2012), who observed sites within the 

Atchafalaya (1.61 ± 0.96 gram per cubic centimeter [g cm-2], n = 14) and Mississippi River Deltas 

(1.14 ± 0.78 g cm-2, n = 9) had the greatest 2011 flood related accumulation of sediment. Figure 2.4A 

also shows the WB units near or between large river outfalls (i.e., Terrebonne and Barataria) or 

floodway systems experienced the highest mean elevation increases. Though Falcini et al. (2012) 

observed more moderate relative sediment accumulation in these areas (Terrebonne 0.42 ± 0.18 g cm-

2, n = 14 and Barataria 0.34 ± 0.22 g cm-2, n = 8), the dissimilarities are potentially due to differences 

in assessment area scale and sample locations. Accretion data from the 2008 MR flood correspond to 

the elevation data and trends that were observed with the 2011 flood, therefore, those data are not 

shown here for brevity. Panel B of figure 2.4 illustrates the elevation change rate for each CRMS 

station from 2006 to 2016. Across the period of record the elevation trends were similar to those that 

were observed pre- and post-floods, with higher increases in relative elevation around high flow and 

high sediment-concentration rivers (i.e., AR and MR). These findings corroborate those by 

Jankowski et al. (2017), who correlated accretion rates with proximity to riverine sediment inputs, 

connectivity to the Gulf of Mexico, and impacts of Chenier ridges and impoundments. 

Wetland Change with Distance from River 

A second hydrologic connectivity assessment was performed using the wetland change with 

distance from river method described in Visser et al. (2003). The wetland change percentage by 

distance (buffers) results are provided in Table 2.2. Similar to findings by Visser et al., wetland loss 

increased with distance from sediment source for most Chenier Plain and Middle Coast basins. This 

was not true for all basins, especially those neighboring the AR and MR basins (i.e., 

Teche/Vermilion, Terrebonne, and Barataria basins), since their outer regions receive large 
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concentrations of sediments through coastal processes, thereby superseding the influence from nearby 

smaller rivers (Rego et al. 2010). This was also not true for the eastern Barataria basin (MR West) 

and MR active delta (MR East, Table 2.2), which are either disconnected (west), or consist of small 

catchments in high energy environments (east) where the MR transports large proportions of its 

sediment beyond the delta’s wetlands (Winer 2011). Conversely, within the northern Breton Sound 

basin (MR North, Table 2.2), data corroborate those by Visser et al. (2003) which show the buffers 

receiving freshwater inputs through the Caernarvon Freshwater Diversion (25 km and 30 km, Figure 

2.2) are those with the lowest wetland loss percentages.  

 

 
 

Figure 2.4. Baseline and flood-related relative elevation change across the Coastwide 
Reference Monitoring System (CRMS) period of record. Panel A shows the change in 

elevation (pre- and post-2011 Mississippi River flood) for all CRMS stations (yellows to 
greens represent increasing elevations and oranges to reds represent decreasing elevations) and 
the mean elevation change by watershed basin (polygons). Panel B represents total elevation 

change rates, where increases are represented by triangles and losses by diamonds. Magnitude 
of change is color ramped in all panels. 

 



29 
 

These assessments of hydrologic connectivity largely corroborate previous smaller-scale 

studies, where sedimentation and nutrient availability increase with connectivity to riverine source 

and hydro period (inundation and duration), and generally, wetlands in close proximity to highly 

connected rivers experience higher rates of accretion and lower wetland loss. Exceptions to these 

include wetlands receiving sediment from distant sources, areas with increased tidal exchange and 

more frequent salinity spikes due to hydrologic alterations (i.e., Houma Navigation Canal impacts in 

Terrebonne Basin) (CLEAR 2006; Steyer et al. 2008), and disconnected wetlands–especially those in 

rapidly subsiding landscapes (i.e., lower Barataria and Mississippi River basins) (Suir et al. 2013; 

Suir et al. 2014). 

 

Table 2.2. Coastal wetland change (1956 to 2013) with distance from primary rivers. 
 

Location Basin 

Distance from River (km) 
5 10 15 20 25 30 35 40 

Wetland Change (%) from 1956 to 2013  
Sabine River Calcasieu/Sabine -8.9 -10.5 -20.8 -25.0 -40.4 -30.2  -  - 
Calcasieu River Calcasieu/Sabine -7.3 -19.1 -31.8 -23.1 -24.3 -27.2  -  - 
Mermentau River Mermentau -10.8 -14.2 -13.5 -13.5 -9.0 -12.2 -12.9 -16.7 
Vermilion/Freshwater Bayou Teche/Vermilion -15.7 -10.8 -12.7 -8.6 -10.2 -7.8 -6.5 -5.9 
Atchafalaya/Wax Lake Outlet Atchafalaya 2.2 -3.4 -2.3 -11.0 -7.5 -7.6 -6.7 -7.3 
GIWW (Atchafalaya Influence) Multiple -9.6 -10.6 -14.0 -15.0 -15.9 -12.6  -  - 
Houma Navigation Canal Terrebonne -22.1 -25.8 -17.1 -14.9 -16.8 -15.6 -8.7 -5.1 
Bayou LaFourche Barataria - west -23.8 -24.2 -16.4 -15.7 -14.3 -9.5 -12.2 -10.0 
Mississippi River West Barataria - east -32.8 -40.3 -32.6 -8.4 -5.0 -7.1 -10.6 -16.5 
Mississippi River East Mississippi River -22.6 -15.0 -10.5 -9.5 -5.9 -1.5 0.1 -1.1 
Mississippi River North Breton Sound -13.1 -23.6 -21.3 -16.6 -7.7 -7.0 -7.4 -5.4 

 

Geomorphologic Zone Productivity 

Figure 2.5 illustrates the spatial variability and patterns of MODIS-derived NDVI within the 

Louisiana coastal zone and across the Chenier Plain, Middle Coast, and Deltaic Plain units. The mean 

NDVI, per pixel, ranged from 0.01 to 0.6 across the 2003 to 2013 period of analysis. The Chenier 

Plain had a mean NDVI of 0.48 ± 0.10 and consisted primarily of moderate vegetative productivity 

(yellow to orange hues). Though portions of this Plain are still influenced by the Atchafalaya River 
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(i.e., westward transportation of sediment and reworking via marine processes), larger areas receive 

inputs from moderate sediment and nutrient concentration rivers (Penland and Suter 1989; Gammill 

et al. 2002; Rosen and Xu 2011). The Chenier Plain has also undergone extreme hydrologic 

modifications (i.e., channelization, water control structures, oil and gas access canals) that have 

increased flooding frequency and duration, which in turn has had significant negative impacts on 

wetland productivity and condition (Gammill et al. 2002; Rosen and Xu 2011). Figure 2.5 also shows 

large expanses of wetlands within the Middle Coast region were highly productive (dark green hues), 

with a mean NDVI of 0.55 ± 0.12. The Middle Coast is a hydrologically connected landscape with 

riverine, marine, atmospheric, and seasonal processes that deliver high concentrations of sediment 

and nutrients to wetlands and prograding deltas (Wax Lake and Atchafalaya) (Perez et al. 2000, 

2003; Rosen and Xu 2013). The Deltaic Plain, which consisted of a mixture of high to low 

productivity (green and red hues, Figure 2.5), had a mean NDVI of 0.4 ± 0.08. The Deltaic Plain 

contains some isolated wetlands that receive high inputs from the MR, some inputs from the AR 

(northern Terrebonne via the ICWW), yet most are disconnected wetlands that have undergone 

extensive degradation (Couvillion et al. 2011).  

 

 
 

Figure 2.5. Productivity classification based on quartile distribution of MODIS-derived 
mean Normalized Difference Vegetation Index values (2003-2013) in coastal Louisiana. 
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Watershed Basin Productivity 

Watershed basins are delineated by drainage area and therefore provide units that are useful 

for assessing hydrology-related landscape condition (Figure 2.2). Figure 2.6 shows the mean NDVI 

values from 2003 to 2013 for each watershed basin in coastal Louisiana, and the corresponding 

means for the Middle Coast, Chenier and Deltaic Plains (dashed lines). The Calcasieu/Sabine and 

Mermentau basins (comprising the Chenier Plain), had mean NDVI values of 0.46 ± 0.09 and 0.5 ± 

0.11, respectively. This was lower than those of the Middle Coast but higher than the Deltaic Plain 

basins. The Middle Coast basins, Teche/Vermilion, Atchafalaya, and Penchant, had mean NDVI 

values of 0.53 ± 0.1, 0.59 ± 0.14, and 0.53 ± 0.1, respectively. The mean productivity in these Middle 

Coast units were significantly higher (p<0.05) than all but the Mermentau basin, which receives AR 

sediment and nutrients through shoreward transport and onshore deposition (Gammill et al. 2002; 

Draut et al. 2005). The Deltaic Plain basins, Terrebonne, Barataria, Breton Sound, Biloxi Marsh, and 

Mississippi River, had the lowest NDVI values, at 0.36 ± 0.06, 0.44 ± 0.08, 0.45 ± 0.12, 0.41 ± 0.06, 

and 0.36 ± 0.12, respectively.  

Although mean NDVI values were not significantly different between some basins, small 

changes or differences in NDVI values have been correlated to significant differences in biomass. 

Tan et al. (2003) quantified the relationship between Landsat-derived NDVI values and wetland 

vegetation biomass, concluding that each 0.1 change in NDVI value correlates to 500 g/m2 change in 

aboveground biomass (r2 = 0.82). Correspondingly, low and decreasing productivity in coastal 

Louisiana basins have been attributed to marsh deterioration and fragmentation resulting from long-

term sediment, nutrient, and freshwater deprivation (Boesch et al. 1994; Day et al. 2000; Cardoch et 

al. 2002; Couvillion et al. 2016). The general tendency in these data show a correlation between 

wetland productivity and river connectivity. 
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Figure 2.6. Mean Normalized Difference Vegetation Index values (2003 to 2013) for each 
geomorphologic zone (dashed line) and watershed basin (bars) in coastal Louisiana. Bars 

with the same letter are not statistically different at p < 0.05 (Tukey’s HSD test). 
 

Vegetation-by-Basin Productivity 

Correlations were observed between NDVI (productivity) and Louisiana’s vegetation zones 

(Figure 2.7, dashed lines). These findings corroborate those in previous research, which show that 

lower salinity environments typically consist of plants with higher leaf area and productivity (Gough 

and Grace 1998; Steyer 2008; Janousek and Mayo 2013). Figure 2.7 also provides a representation of 

the mean NDVI value for each VB unit. The AR influence is evident in each of the four vegetation 

zones. In the fresh zone the higher NDVI values occur in basins that are in closest proximity to the 

AR. Furthermore, even though the Terrebonne Basin is not in the Middle Coast GZ, the fresh portion 

of this basin frequently receives large inflow of AR water by way of the GIWW (Swarzenski 2003). 

Within the intermediate zone many of the basins had similar mean NDVI values, except for the 

Teche/Vermilion and the Mississippi River basin areas, which accounted for the maximum (0.54) and 

minimum (0.36), respectively.  
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Similar trends occurred in the brackish and saline zones, where NDVI values were highest for 

the Chenier, Teche-Vermilion, and northeastern Deltaic Plain basins. The high NDVI values in the 

brackish and saline portions of the Chenier and Teche-Vermilion basins are likely due in part to 

westward marine transport of AR sediment and nutrients (Gammill et al. 2002). The forcings 

contributing to higher Deltaic Plain values in the brackish and saline zones are less obvious, but could 

be due to impacts of Caernarvon Freshwater Diversion sediments on Breton Sound wetlands, and 

nutrient and suspended solids from coastal discharges (from Pearl River and Lake Pontchartrain 

passes) assimilating in the Bayou Biloxi system (Poirrier and Handley 2002). 

 

 
 

Figure 2.7. Mean Normalized Difference Vegetation Index values for each vegetation zone 
(dashed line) and basins (bars) within vegetation zone. Dashed lines with the same letter are 

not statistically different at p < 0.05 (Tukey’s HSD test). 
 

Flood Impacts on Productivity 

A departure from average approach was used to assess flood impacts on plant productivity. 

This method, which compares end of growing season NDVI-derived mean productivity from non-
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flood years (baseline) to those from flood years, is a useful measure that links riverine connectivity to 

plant response. The premise behind this assessment is that wetlands with higher river connectivity 

will receive higher than normal sediment and nutrient inputs (due to major flood events, Day et al. 

2016) and will therefore have a higher productivity (or positive departure from average). Figure 2.8 

illustrates departure from average values comparing MODIS-derived NDVI from August 2011 (post-

flood peak biomass) to average August values from non-flood years (and excluding years with major 

hurricane events).  

 

 
 

Figure 2.8. Departure from average using Normalized Difference Vegetation Index from 
August 2011 (post-flood peak biomass), where greens represent above-average vegetation 

productivity and reds represent below-average productivity. 
 

The highest positive departure values (greens and yellows) were observed in the Atchafalaya, 

Mississippi River, upper Mermentau and Barataria, and parts of the Teche-Vermilion and Bayou 

Biloxi basins. These areas either received freshwater and sediment through natural riverine processes, 

marine transport of river constituents, or through diverted river waters. Moderate to low positive 

departures (orange) were observed in a majority of the Calcasieu-Sabine and Mermentau basin 

wetlands. Negative departures in NDVI values (red) were observed in the upper Penchant, and lower 

Terrebonne and Barataria basins. Though these departures were negative, they were relatively small, 
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and potentially due to floating aquatics, flood duration, and salinity shifts within wetlands (Coastal 

Protection and Restoration Authority [CPRA] of Louisiana 2017). Overall, the departure from 

average results demonstrate the direct response of vegetation to floods, and further corroborate 

previous finding of hydrologic connectivity. 

Landscape Metrics 

 Figure 2.9 illustrates the Aggregation Index (AI) rates of change (slope) for each VB, which 

were computed using 16 wetland and water classified Landsat images from 1988 to 2013. The AI 

rates of change provide a measure of landscape condition that correlates to wetland integrity and 

stability (Suir et al. 2013; Couvillion et al. 2016). Though the AI slopes ranged from -0.24 (red) to 

0.01 (dark green), the majority of VB units experienced decreasing AI rates over this period. Only the 

Atchafalaya Fresh and Teche-Vermilion Saline units experienced positive rates of AI.  Rates for these 

units were most closely matched by the Barataria Fresh and Mississippi River delta units, which 

experienced small decreasing rates of AI. Most VB units experienced moderately negative AI rates, 

except for the more saline Terrebonne and Barataria units, and the fresher Breton Sound units, which 

experienced the largest negative rates of change. The more stable AI rates in Atchafalaya, Teche-

Vermilion, and Mississippi River units are anticipated results with their proximity to large river 

influence. However, stable AI in the upper Barataria is less expected, but potentially due to river 

inputs through the GIWW and Davis Pond Diversion (Figure 2.2), and its inland position, which 

limits the erosive pulses and presses that are active in the intertidal zone. The less stable AI rates in 

lower Terrebonne and Barataria basins are also anticipated since these regions are highly sediment 

deprived and have been subjected to salinity intrusion, oil and gas access canal impacts, and 

accelerated rates of subsidence (Sasser et al. 1986). The less stable AI in the upper Breton Sound 

basin is potentially due to Hurricane Katrina impacts (Barras 2005). Figure 2.9 also illustrates the 

range of AI and wetland stability in the GZ units. Overall, Middle Coast wetlands retained higher 
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levels of aggregation and spatial integrity. Chenier Plain wetlands experienced moderately decreasing 

aggregation, while the wetlands of the Deltaic Plain experienced a wider range of aggregation 

change. 

 

 
 

Figure 2.9. Landsat derived Aggregation Index mean change rate (1988 to 2013) by 
Vegetation by Basin assessment unit and assessed by geomorphological zone. Dark green 

areas represent wetland landscapes with highest stability and red areas with lowest stability. 
 

Multi-Metric Evaluation 

Aggregation Index provides temporal and spatial measures of wetland structure that, 

combined with Class Area (CA) and NDVI values, allow for assessments of additional linkages 

between river connectivity with wetland productivity and spatial integrity. Figure 2.10 illustrates the 

mean NDVI values (green bars, above and below axis represents positive and negative values, 

respectively), along with the CA and AI change rates (red and yellow, respectively) for each of the 

VB units. The majority of VB zone wetlands exhibited moderate CA, NDVI, and AI values and rates 

across the period of analysis, with few zones near the minima and maxima. Similar relative tends 

exist across these metrics, with wetland areas in close proximity to large river influence, or those that 

receive river sediment via marine processes, having the highest productivity and stability. 
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Conversely, VB zones with lesser river influence, especially those with higher susceptibility (i.e., 

energy, altered hydrology, and subsidence) experienced the lowest productivity and stability.  

 

 
 

Figure 2.10. Landsat derived mean Normalized Difference Vegetation Index (NDVI) 
values, and Class Area (CA) and Aggregation Index (AI) change rates, for each vegetation 

by watershed basin assessment unit. 
 

While each metric provides separate measures of wetland structure or function, individually, 

they lack the ability to link causal mechanisms to, and relationships between, wetland productivity 

and stability. Figure 2.11 plots the mean NDVI against the mean AI for all VB across the 1988 to 

2013 period to evaluate correlations between wetland productivity and spatial integrity. The plot 

shows moderate correlations (r2 = 0.558) between NDVI and AI, where higher NDVI values typically 

return higher AI values. Anomalies occur in areas where major hurricanes have impacted wetland 

productivity, which has been shown to affect NDVI values, even over long time periods (Li et al. 

2016).     

To consider correlations between river connectivity with wetland function and structure, data 

points within Figure 2.11 were color coded based on GZ. The mean NDVI and AI values by VB unit 

within the Chenier Plain, Middle Coast, and Deltaic Plain are represented by the orange, green, and 

red points, respectively. The two blue data points represent Deltaic Plain assessment units that 
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receive AR inputs via the GIWW (Terrebonne Fresh) or AR and MR inputs via the GIWW and Davis 

Pond Diversion (Barataria Fresh). Figure 2.11 shows the higher NDVI and AI combinations are 

dominated by the Middle Coast VB, the moderate NDVI and AI combinations are dominated by the 

Chenier Plain VB, and the lower NDVI and AI combinations are dominated by the Deltaic Plain VB 

units. These trends show wetlands with highest river connectivity typically are the most productive 

and stable. One exception is the Mississippi River Delta, which accumulates more sediment than all 

other VB units, however, current sedimentation is insufficient in offsetting the combined effects of 

altered hydrology, salinity fluxes, wind- and wave-induced erosion, and the high rates of compaction 

and subsidence (Gagliano et al. 1981). 

 

 
 

Figure 2.11. Coastwide plots of mean Normalized Difference Vegetation Index versus 
mean Aggregation Index for all vegetation by watershed basin assessment units. The 

Chenier Plain, Middle Coast, and Deltaic Plain are represented by the orange, green, and red 
dots, respectively. The blue dots represent assessment units that receive river inputs from 

distant sources. 
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CONCLUSIONS 

Remote sensing and landscape analyses provided enhanced techniques for evaluating river 

influence on biomass and correlations to spatial integrity. MODIS- and Landsat-derived NDVI, CA, 

and AI—integrated with river discharge, river sediment concentration, and accretion data—were used 

to perform multi-temporal and -spatial scale assessments to differentiate wetland productivity and 

stability based on proximity to large river systems. Louisiana wetland productivity is highly 

associated with seasonality and vegetation zones, susceptible to episodic events (hurricanes and 

floods), and significantly correlated to river connectivity. This was observed under baseline 

conditions, post-major flood events, and across short and long periods of observation. Similarly, 

positive correlations between landscape stability and river influence were observed. Ultimately, these 

assessments validate assumptions that wetland productivity and stability are at least partial functions 

of river connectivity. Though wetland loss is often the combined effects of subsidence, energy, 

saltwater intrusion, and human activities, sediment deprivation has been shown to be a primary driver 

in the long-term degradation of wetland structure and function. Continued evaluations of wetland 

productivity and landscape configuration, along with other ecosystem drivers, will provide a greater 

understanding of river and sediment importance for wetland stability and restoration. 
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CHAPTER 3 – COMPARING CARBON ACCUMULATION IN RESTORED 
AND NATURAL WETLAND SOILS OF COASTAL LOUISIANA 

 
 

INTRODUCTION 

Recent and future-projected effects from climate change has stimulated the need to reduce 

greenhouse gas (GHG) sources and to increase GHG sinks to help mitigate those effects. Wetlands 

provide numerous ecosystem goods and services ranging from protecting and improving water 

quality, providing critical habitat, storing floodwaters, to providing important biogeochemical 

processes where nutrients, organic compounds, metals, and components of organic matter are 

transformed and stored (Brady and Weil 1996; Osland et al. 2012; Reddy and DeLaune 2008). 

Though they only occupy approximately 5% of the Earth’s surface, wetlands represent the largest 

component (40%) of the terrestrial biological carbon (C) pool (~ 2,500 petagram [Pg]), and are 

important links in the sequestration of carbon and cycling of atmospheric gases (Armentano and 

Menges 1986; Chmura et al. 2003; Hossler and Bouchard 2010; Lal and Pimentel 2008; Mitsch and 

Gosselink 2000; Mitsch et al. 2013). Carbon sequestration in wetland systems consist of the rapid 

accumulation and storage of soil organic matter (SOM) in wetland sediments (Bridgham et al. 2006; 

Mcleod et al. 2011; Sifleet et al. 2011). Also, these sediments provide anaerobic, acidic, and thermal 

conditions that result in the sequestration of carbon for much longer periods than other systems 

(Burkett and Kusler 2000). 

North American wetlands account for 42% of the global carbon pool (Bridgham et al. 2006). 

This sheer abundance, in addition to the potential and critical nature of carbon sequestration (i.e., 

buffers the emissions of GHGs from soil to the atmosphere), make SOM one of the Nation’s most 

important resource (Albrecht 1938; Lal 2004). The SOM content within wetland systems are 

primarily driven by processes such as biodegradation, photochemical oxidation, sedimentation, 

volatilization, and sorption (Kayranli 2010). Since these processes are highly dependent on wetland 
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health and productivity, the release of stored carbon to the atmosphere is significantly increased when 

wetland conditions degrade (Lane 2016).  

With extreme reductions in wetlands worldwide, approximately 50% of wetlands have been 

loss since 1900, many wetland goods and services are at risk (Davidson 2014). Wetlands, through 

natural function and losses, have significantly contributed to GHG emissions, accounting for 

approximately 15% to 40% of the annual global CH4 flux per year (Ehhalt et al. 2001; Poffenbarger 

et al. 2011). In the United States, early wetland loss was dominated by the draining and conversion of 

wetlands to agricultural lands, which accelerated oxidation of stored carbon and its release to the 

atmosphere as CO2 (Armentano and Menges 1986). In Louisiana, which accounts for approximately 

40% of the Nation's wetlands, but 90% of its loss, marsh deterioration has resulted in massive organic 

matter loss through the exportation to estuaries and offshore areas, and subsequent carbon release 

through oxidation (Couvillion et al. 2011; DeLaune and White 2011; Williams 1995).  

To remediate these losses, many ecosystem stakeholders have advanced protection and 

restoration strategies to reestablish critical wetland goods and services. One relatively new strategy is 

to utilize wetland creation and restoration measures to increase soil organic carbon (SOC) density, 

distribution, and stability in the soil (Lal 2004). However, in many cases carbon sequestration and 

storage are secondary benefits or “added value” of wetland restoration. Uncertainties persist about the 

long-term linkages between climate change and wetland processes, especially in restored systems 

(Chmura et al. 2003; Edwards and Proffitt 2003). Though some created wetlands have been shown to 

quickly achieve vegetative equivalency to naturally occurring target wetlands (specifically when sites 

are planted), most require decades or longer (especially with SOC accumulation), or, they never 

achieve equivalency (Edwards and Proffitt 2003; Hogan et al. 2004; Hossler and Bouchard 2010; 

Moreno-Mateos et al. 2012; Osland et al. 2012).  
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For more informed resource management decisions, considerable research is needed to 

evaluate and compare the rates of carbon sequestration in restored ecosystems to naturally occurring 

reference wetlands (Loomis and Craft 2010). Therefore, the purpose of this study was to evaluate the 

influence that wetland ecosystem management and restoration have on carbon sequestration potential 

and chronosequence. This was accomplished by comparing organic material, bulk density, carbon 

content, and rates of accumulation between various ages and types of restored and reference 

wetlands. The specific objectives of this study were to (1) compile a comprehensive set of all relevant 

restoration project and soils data, (2) map the spatial distribution of relevant wetland soils 

characteristics, (3) compute carbon sequestration rates for restored and natural wetland sites, (4) 

compare soil function across type and age of restoration measure, and (5) evaluate implications for 

future restoration and climate change. 

METHODS  

Study Area and Assessment Units 

The Louisiana coastal zone is dominated by histosol wetlands that occupy an ecological niche 

across unique ranges of condition and function, ranging from riverine-influenced fresh and brackish 

areas to “Blue Carbon” marshes nearest the coast where salinities above 17 part per thousand (ppt) 

reduce the production of methane and other GHGs to negligible amounts (Chambers et al. 2013; 

DeLaune et al. 2013). To evaluate key wetland functions, this study utilized soil samples, data from 

scientific literature, and those collected as part of multiple restoration and monitoring programs and 

projects (Figure 3.1). Qualifying samples and sites were selected from wetland restoration areas (i.e., 

wetland creation, terracing, hydrologic alteration, freshwater diversion, sediment diversion) and 

target reference areas where soil nutrient analyses have been performed or where soil cores were 

available for analyses. The Program sites consisted primarily of Coastwide Reference Monitoring 

System (CRMS) and Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA) 
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monitoring stations. These stations are part of large-scale data collection and monitoring systems that 

were developed to characterize and compare wetland hydrology, ecology, soil, and geomorphology 

conditions across project and non-project areas throughout coastal Louisiana (Steyer et al. 2003; 

Wang et al. 2017). The size and density of these data sets offer unprecedented opportunities for 

studying coastal wetland dynamics and subtle soil processes and interactions (Jankowski et al. 2017). 

The Program sites were supplemented with Project sites, where samples were collected (by the 

authors and others) within the following sites: (1) Sabine Refuge Marsh Creation project, (2) Wax 

Lake Delta (DeLaune et al. 2016), (3) Atchafalaya Big Island Mining creation project, (4) Davis 

Pond Freshwater Diversion (DeLaune et al. 2013), (5) Bayou Labranche Wetland Creation project 

(Richardi 2014), and (6) Little Lake Marsh Creation project (Figure 3.1). 

 

 
 

Figure 3.1. Location map of the Assessment Units (Coastal Zone, Watershed Basins, and Vegetation 
Zones), Program sites (dots), and supplemental Project sites (stars) in coastal Louisiana.  

 

The coastal zone was divided into multi-scale assessment units to evaluate potential 

correlations between soil function and restoration type, whilst considering geomorphic and 

hydrologic settings. These assessment units include (1) Coastal Zone (CZ), (2) Watershed Basins 
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(WB), (3) Vegetation Zones (VZ), and (4) Vegetation by Basin units (VB) (Figure 3.1). This allowed 

for spatial and chronosequence approaches (i.e., space-for-time substitution) to evaluate impacts and 

age of restoration on soil function. Mean relative short-term (feldspar) and longer-term (decadal from 

cesium data) vertical accretion, bulk density, organic matter, carbon content, and short-term carbon 

accumulation rates were calculated and evaluated for all assessment units.  

Soil Acquisition, Sampling, and Analysis 

Soils data utilized in this study consisted of those from the scientific literature, from 

previously collected Program soils (Coastal Protection and Restoration Authority [CPRA] of Louisiana, 

2017), or were sampled from select Project sites. Project soil cores were collected from restoration 

and reference stations at the Sabine (Oct 2015), Wax Lake (Jun 2013), Atchafalaya (Sep 2015), Davis 

Pond (2011), Bayou Labranche (multi-year), and Little Lake (Nov 2014 and Oct 2015) study sites. 

Subsurface soils at the Project sites were sampled with a 5-cm diameter thin walled aluminum corer 

(with a sharpened edge) to a depth of 15-cm. This depth typically contains the highest soil carbon 

content and is a reasonable proxy for use in standard carbon estimation (Jenkins et al. 2010). The 

Program sites are typically sampled with 10.2-cm diameter corers to a depth of 30-cm, and sliced into 

4-cm increments. The standard for both Project and Program samples were to place soils into labelled 

sealable storage bags and transport to LSU or contracting laboratories for processing. 

Key soil characteristics and processes in the marsh soils were determined using techniques 

previously reported by DeLaune et al. (2013). Short- and longer-term vertical accretion rates were 

also extracted from Program repositories and scientific literature, respectively. The short- and longer-

term (decadal) vertical accretion data were calculated using the Feldspar marker and 137Cs methods 

described in Folse et al. (2014) and DeLaune et al. (1978), respectively. For bulk density 

determinations, subsamples were oven-dried to a constant weight at 60º Celsius. For soil organic 

matter (SOM) percentage, the Walkley-Black acid-dichromate oxidation method was used for the 
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Project soils (Nelson and Sommer 1982), and the Loss On Ignition (LOI) method was used for the 

Program soils (Andrejko et al. 1983). The LOI method is a quicker and less expensive alternative to 

other methods, and is a reliable and suitable method for soil C analysis (Wright 2008). For each 

Program site, data from the top segments (0 to 16-cm) were averaged for congruity with Project 

samples. The SOM measurements were transformed to total carbon content (percentage) by dividing 

by a factor of 1.724 and multiplying by 100 (Allen 1974; Craft et al. 1991).  The carbon sequestration 

rates (gC m-2 y-1) for each site were calculated by multiplying the short-term sediment accretion rate 

(cm3/y) by the soil bulk density (g/cm3) and then by the carbon content (percentage) (Bernal and 

Mitsch 2013). With recent efforts to standardize carbon sequestration and GHG emission units, the 

gC m-2 y-1 rates were also converted to CO2 equivalents (CO2e). Every 12g of carbon (atomic mass is 

12g/mol) is equal to 44g of CO2 (atomic mass is 44g/mol), therefore the sequestration rates were 

converted to CO2e by multiplying the gC m-2 y-1 rate by 44gCO2e and dividing by 12gC (Sifleet et al. 

2011). ESRI ArcGIS was used to manage, analyze, and map the spatial distribution of these wetland 

soil attributes, and their differences, over space and time. These data were used as general measures 

of restoration impacts on carbon fluxes, primarily through sequestration. Though wetlands also emit 

GHG, which can be a major component of the carbon cycle and influence or counteract sequestration 

rates, GHG flux assessments were beyond of the scope of this study.   

 Statistical Analyses  

In order to attain comparability among soil attributes and rates for each assessment scale, 

statistical analyses were conducted using Statistical Analysis System software version 9.2. The 

PROC GLM procedure was used to perform a one-way analysis of variance (ANOVA) and a means 

separation test (Tukey’s, α = 0.05) to evaluate significance of differences between soil attributes for 

each assessment units. Additionally, a second order polynomial regression with coefficient of 

determination (r2) was used to evaluate correlations between soil attributes and age of restoration. 



53 
 

RESULTS AND DISCUSSION 

Coastal Zone 

Soil measurements were calculated using 1,224 data points from across the coastal zone of 

Louisiana. The collective means and standard deviations (independent of project type, 

geomorphology, hydrology, and age) for select soil characteristics (i.e., bulk density, organic matter, 

total carbon, short-term accretion [feldspar], longer-term accretion [137Cs], and short-term carbon 

accumulation) are provided in Table 3.1.  

 

Table 3.1. Average bulk density, organic matter, total carbon, accretion, and carbon accumulation 
from all sites within the Louisiana coastal zone. 

 

    
Bulk    
Density   

Organic   
Matter   

Total    
Carbon   

Short Term 
Accretion 
(Feldspar)   

Longer Term 
Accretion 
(137Cs)†   

Short Term Carbon 
Accumulation 

Coastal 
Zone Count g/cm3   percent   percent   cm y-1   cm y-1   gC m-2 y-1 gCO2e 

Mean 1224 0.299  33.919  19.67  1.03  0.79  371.9 1363.6 

Std 1224 0.245  21.11  12.24  0.80  0.36  294.7 1080.6 
† Longer term accretion data from  Byrant and Chabreck 1998; Day et al. 2012; DeLaune et al. 1989; DeLaune et al. 1992; Foret 1997;  
   Foret 2001; Nyman et al. 1993; Rybczyk and Cahoon 2002; Sasser et al. 2002; Swenson and Turner 1994. 

 

Sites within the coastal zone had significantly higher short-term accretion rates (mean 1.03 ± 

0.8 cm y-1) than longer-term (decadal) rates (mean 0.79 ± 0.36 cm y-1). Soil data with adequate core 

depths were not available for the computation of longer-term carbon accumulation rates. However, 

since shorter-term (feldspar) accretion rates are largely similar to longer-term accretion rates (Tables 

3.2-3.4), they provide a good estimate of longer-term carbon accumulation. Average short-term 

carbon accumulation rates for each sample site are provided in Figure 3.2. This figure illustrates the 

range and distribution of carbon accumulation rates across the coastal zone, where lower rates were 

observed in the west (Chenier Plain), higher rates occurred in the "Middle Coast", and a wider range 

of rates occurred in the eastern portion of the Deltaic Plain. Overall, the average carbon accumulation 
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rate for the coastal zone was 371.88 ± 294.7 gC m-2 y-1 (1363.56 ± 1080.57 gCO2e) (Table 3.1). This 

is above the average rate (118 gC m-2 y-1; 432.67 gCO2e) of carbon sequestration for wetlands 

throughout the world (Mitsch et al. 2013), and is indicative of the highly productive and functioning 

wetlands in coastal Louisiana. 

Watershed Basin 

Previous small-scale studies have reported increased carbon sequestration with increasing 

river connectivity due to decreasing mineralization of soil organic matter (Wang and Dodla 2013). 

Watershed basins, delineated primarily on hydrologic connectivity, were used as large-scale 

assessment units for evaluating general hydrologic influence on carbon accumulation (Suir et al. in 

review). The mean values for key soil characteristics are provided in Table 3.2. Mean bulk density 

ranged from 0.19 g cm-3 to 0.79 g cm-3 for Mermentau and Mississippi River basins, respectively. For 

total carbon, the means ranged from 4.1% to 26.2% for Mississippi River and Mermentau basins, 

respectively. Comparisons of short- and long-term accretion rates agree with previous studies which 

show that over time accretion slows (Sadler 1981; Smith 2009). The sediment in basins that receive 

larger river inputs (i.e., Atchafalaya, Mississippi River, Penchant, Vermilion-Teche) (Suir et al. in 

review) had significantly (p<0.05) higher carbon accumulation rates than those with lower inputs 

(i.e., Biloxi Marsh, Calcasieu/Sabine, Mermentau). The Mississippi River basin had the highest mean 

carbon accumulation rate (585 ± 476 gC m-2 y-1; 2145 ± 1745.3 gCO2e), and Calcasieu/Sabine basin 

had the lowest (132 ± 111 gC m-2 y-1; 484 ± 407 gCO2e). The general tendency in these data show a 

correlation between carbon accumulation and river hydrogeomorphology, where higher carbon 

accumulation rates are generally found in hydrogeomorphic zones or watershed basins with the 

highest  hydrologic connection to high flow and high sediment rivers.
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Figure 3.2. Average short-term (feldspar) carbon accumulation rate for all sites within the Louisiana Coastal Zone assessment unit. 
 

Table 3.2. Average bulk density, organic matter, total carbon, accretion, and carbon accumulation from sites within each basin unit. 
 

    
Bulk    
Density   

Organic   
Matter   

Total    
Carbon   

Short Term 
Accretion 
(Feldspar)   

Longer Term 
Accretion 
(137Cs)†   

Short Term Carbon 
Accumulation 

Basin Count mean ± std  mean ± std  mean ± std  mean ± std  mean ± std  mean ± std mean ± std 
    g/cm3   percent   percent   cm y-1   cm y-1   gC m-2 y-1 gCO2e 
Atchafalaya 90 0.38 ± 0.3  19.5 ± 13.1  11.34 ± 7.6  1.57 ± 1.04  1.43 ± 0.29  436 ± 293 1599 ± 1074 
Barataria 233 0.3 ± 0.31  37.8 ± 25  21.9 ± 14.5  1.31 ± 0.89  0.76 ± 0.19  451 ± 389 1654 ± 1426 
Biloxi 36 0.43 ± 0.27  21.5 ± 12.9  12.48 ± 7.5  0.72 ± 0.85  0.65 ± 0.09  256 ± 343 939 ± 1258 
Breton Sound 54 0.33 ± 0.17  26.4 ± 12.9  15.34 ± 7.5  1.02 ± 0.83  0.81 ± 0.35  414 ± 390 1518 ± 1430 
Calcasieu-Sabine 148 0.22 ± 0.2  41.5 ± 19.7  24.04 ± 11.4  0.4 ± 0.3  0.41 ± 0.13  132 ± 111 484 ± 407 
Mermentau 156 0.19 ± 0.13  45.2 ± 21.6  26.22 ± 12.6  0.72 ± 0.39  0.69 ± 0.18  272 ± 180 997 ± 660 
Mississippi River 30 0.79 ± 0.28  7 ± 3  4.06 ± 1.7  2.18 ± 1.94  1.9 ± 0.11  585 ± 476 2145 ± 1745  
Pearl 9 0.29 ± 0.07  24.6 ± 5  14.29 ± 2.9  0.95 ± 0.18  0.78 ± 0  374 ± 77 1371 ± 282 
Penchant 39 0.33 ± 0.13  23.2 ± 9.7  13.46 ± 5.6  0.85 ± 0.33  0.85 ± 0.36  321 ± 112 1177 ± 411 
Pontchartrain 179 0.27 ± 0.2  39.3 ± 19.7  22.78 ± 11.5  0.92 ± 0.36  0.73 ± 0.28  406 ± 234 1489 ± 858 
Terrebonne 99 0.27 ± 0.12  30.9 ± 15.9  17.92 ± 9.2  1.34 ± 0.9  0.83 ± 0.2  501 ± 302 1837 ± 1107 
Vermilion-Teche 150 0.36 ± 0.22   27.4 ± 17.1   15.9 ± 9.9   1.05 ± 0.29   0.8 ± 0.18   408 ± 136 1496 ± 499 

† Longer term accretion data from  Byrant and Chabreck 1998; Day et al. 2012; DeLaune et al. 1989; DeLaune et al. 1992; Foret 1997; Foret 2001; Nyman et al. 1993;  
   Rybczyk and Cahoon 2002; Sasser et al. 2002; Swenson and Turner 1994. 
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Vegetation Zone 

Short-term carbon accumulation rates in the surface layer (~15 cm) of wetlands are largely 

driven by net primary productivity (above and below-ground biomass) and microbial decomposition 

(Baustian et al. 2017; Bernal et al. 2008; Kayranli et al. 2010; Powlson 2011). Since primary 

productivity is significantly correlated to salinity (i.e., vegetation zone) (Steyer 2008; Suir et al. in 

review), carbon accumulation rates were evaluated across the vegetation zones in coastal Louisiana. 

The means and standard deviations of key soils characteristics by vegetation zone are provided in 

Table 3.3. The carbon accumulation rates ranged from a low of 300 ± 254 gC m-2 y-1 (1100 ± 931.3 

gCO2e) for the Intermediate zone, to a high of 468 ± 247 gC m-2 y-1 (1716 ± 905.67 gCO2e) for the 

Swamp zone. The means of carbon accumulation rates in the Saline zone were significantly different 

(p<0.05) than those in the Brackish and Intermediate zones, while those in the Swamp zone were 

significantly different than the Brackish, Fresh, and Intermediate zones. Though the carbon 

accumulation rates in the Saline and Swamp zones were significantly higher than other zones, no 

definitive relationship was observed between carbon accumulation rate and changes in salinity 

(vegetation zone). These findings corroborate those from previous small-scale studies, which 

demonstrated carbon accumulation rates were similar in various marsh types in coastal Louisiana 

(DeLaune and White 2011; Hatton et al. 1982; Nyman et al. 2006).  

Vegetation Zone by Watershed Basin 

To assess the potential combined influence of salinity and hydrogeomorphology on carbon 

accumulation, evaluations were performed using vegetation zone by watershed basin (VB) units. 

Figure 3.3 provides a schematic of mean carbon accumulation rates for reference sites by VB, 

represented as polygons (white represents lowest rates, black represent the highest rates, and hatched 

areas contained no reference sites), and the rates for restoration projects are represented by dots 

(graduated dots correlate to range of rate). It should be noted that though these change rates are 
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represented using different symbologies (dots for restoration and polygons for reference sites) in 

Figure 3.3, they were both derived using discretely collected soils data. It should also be noted that 

the dots representing the rates of change for the restoration sites are centroids (within each VB zone) 

and do not represent exact sample locations. This is an important consideration since wetland loss 

and function are variable and nuances of impacts across smaller areas, especially within the inactive 

portions of the Deltaic Plain.  

  

 
 

Figure 3.3. Average short-term (feldspar) carbon accumulation within Vegetation Zone by 
Basin assessment units for reference sites (polygons, lighter gray represents lower rates and 

darker gray represents higher rates) and restoration sites (red dots, smaller dots represent 
lower rates and larger dotes represent higher rates).  

 

The average carbon accumulation by VB for reference sites ranged from 141 ± 95 gC m-2 y-1 

(517 ± 348.3 gCO2e) for the Calcasieu-Sabine brackish zone to 804 ± 612 gC m-2 y-1 (2948 ± 2244 

gCO2e) for the Breton brackish zone. The reference sites with the highest mean carbon accumulation 

(darkest polygons) were those that are either in zones of high river connectivity or consist of swamp 

or higher salinity tolerant marsh (Suir et al. in review). The average carbon accumulation by VB for 

project sites ranged from 31 ± 3 gC m-2 y-1 (113.67 ± 11 gCO2e) for the Calcasieu-Sabine fresh zone 

to 646 ± 424 gC m-2 y-1 (2368.67 ± 1554.67 gCO2e) for the Mississippi River intermediate zone. The 



58 
 

VB zones with the highest project rates of carbon accumulation (large points in Figure 3.3) were 

generally correlated to VB zones with highest reference site rates. This demonstrates the influence of 

local geomorphic, hydrologic, and coastal processes on wetland function. The variability in carbon 

accumulation rates across VB zones are largely driven by salinity, riverine inputs (i.e., nutrients and 

sediments), and whether a project site receives extended benefits (i.e., diversions) or benefits from 

multiple restoration measures (e.g., marsh creation site receiving added benefits from sediment or 

freshwater diversions). 

Restoration Project 

Soils of newly constructed or restored wetlands initially retain properties more typical of the 

terrestrial (or source) soils from which they were created, and they generally take decades to achieve 

functional equivalency to naturally occurring wetlands (Edwards and Proffitt 2003; Hogan et al. 

2004). Comparisons of carbon accumulation rates between restoration and reference sites, and 

between restoration measures, were conducted. The mean values of bulk density, organic matter, total 

carbon, accretion, and carbon accumulation are provided in Table 3.4. When compared collectively, 

restoration sites had higher bulk densities and accretion rates, and lower SOM and TC, than reference 

sites, though none were significantly different (Table 3.4). The reference sites did have significantly 

higher short-term carbon accumulation rates, averaging 415.17 ± 300.1 gC m-2 y-1 (1522.29 ± 

1100.37 gCO2e) compared to the restoration sites, which averaged 302.29 ± 271.75 gC m-2 y-1 

(1108.4 ± 996.42 gCO2e). 

The average carbon accumulation rates by restoration type ranged from a low of 240 ± 151 

gC m-2 y-1 (880 ± 553.37 gCO2e) for hydrologic restoration to a high of 520 ± 490 gC m-2 y-1 

(1906.67 ± 1796.67 gCO2e) for sediment diversions. The hydrologic restoration measure had 

significantly lower carbon accumulation rates than the reference, sediment diversion, and freshwater 

diversion sites, and the sediment diversion sites had significantly higher rates than the marsh creation 
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sites (p<0.05). Though the average total carbon (g kg-1) at the sediment diversion sites was 

significantly lower than all other restoration types, the higher bulk density and accretion rates for the 

sediment diversion measure resulted in higher carbon accumulation rates.   

Carbon Accumulation by Age 

Previous studies have reported that wetlands can be both a source and sink of carbon 

depending on ecosystem condition and age (DeLaune et al. 2016; Kayranli et al. 2010). The 

relationships between carbon accumulation and project maturity were evaluated for all restoration 

sites and for each restoration type. The general trends observed were slight increases in carbon 

accumulation with age for the freshwater diversion (y = 18.9x + 69) and hydrologic restoration (y = 

7.5x + 147.2) measures, slight decrease for marsh creation (y = -2.3x + 344.1) sites, and considerable 

decreases for the terracing (y = -50.9x + 903.6) and sediment diversions (y = -99x + 1792.4) 

measures. Except for the terracing sites, which consisted of only two temporal data points (r2 = -

0.99), carbon sequestration rates were not significantly correlated (r2 < 0.08) with age. Overall, the 

trend in carbon accumulation for all restoration sites showed a slight increase (y = 3.8x + 262.6) with 

age. These findings corroborate previous small-scale studies that have reported gradual increasing 

carbon accumulation in restored or created wetlands over time, and approximately several decades of 

maturity before restored or created wetlands reach functional equivalency to natural or reference 

wetlands (Moreno-Mateos et al. 2012). 

Though the chronosequences examined may be too short (<25 y) to investigate the maturity 

required for wetland restoration sites to reach equilibrium with reference wetland functions, they do 

provide a general trajectory of carbon accumulation rate for all restoration sites, and rates for each 

wetland restoration type, over time.  
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Table 3.3. Average bulk density, organic matter, total carbon, accretion, and carbon accumulation from sites within each vegetation zone 
assessment unit. 

 

  Bulk    Density  
Organic   
Matter  

Total    
Carbon  

Short Term 
Accretion 

 
 

Longer Term 
Accretion 

 
 

Short Term Carbon 
Accumulation 

Vegetation Zone Count mean ± std  mean ± std  mean ± std  mean ± std  mean ± std  mean ± std mean ± std 

  g/cm3  percent  percent  cm y-1  cm y-1  gC m-2 y-1 gCO2e 
Fresh 171 0.28 ± 0.29  38.1 ± 26.2  22.1 ± 15.2  1.27 ± 1.11  1.02 ± 0.46  376 ± 268 1379 ± 983  
Intermediate 293 0.24 ± 0.21  39.6 ± 21.3  23.0 ± 12.3  0.86 ± 0.65  0.76 ± 0.43  300 ± 254 1100 ± 931 
Brackish 353 0.32 ± 0.28  32.1 ± 20.1  18.7 ± 11.7  0.96 ± 0.54  0.7 ± 0.22  345 ± 261 1265 ± 957 
Saline 215 0.35 ± 0.19  23.2 ± 11.2  13.4 ± 6.5  1.16 ± 1.13  0.72 ± 0.2  435 ± 413 1595 ± 1514 
Swamp 153 0.28 ± 0.21  39.5 ± 20.4  22.9 ± 11.8  1.03 ± 0.43  0.9 ± 0.37  468 ± 247 1716 ± 906 
Other 38 0.39 ± 0.24  26.0 ± 22.0  15.1 ± 12.8  1.23 ± 0.76  0.88 ± 0.35  408 ± 195 1496 ± 715 

† Longer term accretion data from  Byrant and Chabreck 1998; Day et al. 2012; DeLaune et al. 1989; DeLaune et al. 1992; Foret 1997; Foret 2001; Nyman et al. 1993;  
   Rybczyk and Cahoon 2002; Sasser et al. 2002; Swenson and Turner 1994. 
 

Table 3.4. Average bulk density, organic matter, total carbon, accretion, and carbon accumulation for reference and restoration sites. 
 

 
 Bulk    

Density  
Organic   
Matter  

Total    
Carbon  

Short Term 
Accretion 

 
 

Longer Term 
Accretion 

 

 Short Term Carbon 
Accumulation 

Project Count mean ± std  mean ± std  mean ± std  mean ± std  mean ± std 
 

mean ± std mean ± std 

 
 

g/cm3  percent  percent  cm y-1  cm y-1 
 

gC m-2 y-1 gCO2e 
  Reference 754 0.28 ± 0.18  33.4 ± 18.7  19.37 ± 10.9  1.07 ± 0.8  0.81 ± 0.33  415 ± 300 1522 ± 1100 
  Restoration 469 0.33 ± 0.32  34.8 ± 24.5   20.17 ± 14.2  0.97 ± 0.8  0.78 ± 0.4  302 ± 272 1107 ± 997 
  Fresh Diversion 73 0.37 ± 0.4  32.7 ± 20  18.99 ± 11.6  1.05 ± 0.6  0.64 ± 0.14  377 ± 295 1382 ± 1082 
  Hydro Restoration 243 0.14 ± 0.09  50.5 ± 19.4  29.31 ± 11.2  0.69 ± 0.38  0.68 ± 0.22  240 ± 151 880 ± 554 
  Marsh Creation 114 0.52 ± 0.31  11.8 ± 9.5  6.83 ± 5.5  1.19 ± 0.62  0.75 ± 0.42  324 ± 324 1188 ± 1188 
  Sed. Diversion 33 0.84 ± 0.31  6.3 ± 3.4  3.67 ± 2  2.04 ± 1.99  1.82 ± 0.22  520 ± 490 1907 ± 1797 
  Terracing 6 0.46 ± 0.07   14.5 ± 3.7   8.41 ± 2.2   0.92 ± 0.77   0.86 ± 0.59  318 ± 252 1166 ± 924 

† Longer term accretion data from  Byrant and Chabreck 1998; Day et al. 2012; DeLaune et al. 1989; DeLaune et al. 1992; Foret 1997; Foret 2001; Nyman et al. 1993;  
   Rybczyk and Cahoon 2002; Sasser et al. 2002; Swenson and Turner 1994. 
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CONCLUSIONS 

The net balance of carbon in wetland systems is largely driven by hydrology (flooding 

regime), plants species, climate, soil OM decomposition (mineralization), and salinity (Bernal et al. 

2008; Kayranli et al. 2010; Mitsch 2013). However, there are data gaps and conflicting results 

regarding key wetland and climate change interactions. This study set forth to compile and map the 

spatial distribution of relevant wetland soil characteristics, evaluate key presses, functions, and 

chronosequence of restored and naturally occurring wetland soils, and assess implications for future 

ecosystem restoration and climate change. This was accomplished by utilizing an exceptionally large 

data set to perform the first coastwide assessment of carbon accumulation in Louisiana wetlands. 

Carbon accumulation rates in the Louisiana coastal zone were generally correlated to 

hydrogeomorphology and distinctive trends were observed within the Chenier Plain, Middle Coast, 

and Deltaic Plains. Comparisons of carbon accumulation within smaller-scale assessment units 

revealed higher rates generally occurred in zones of high river connectivity or in swamp or higher 

salinity tolerant marsh. Naturally occurring wetlands had significantly higher carbon accumulation 

rates than the average of all restoration sites, though the sediment diversion sites had significantly 

higher accumulation rates than all other sites.  

Putting these results in the context of other studies, the high rates of accumulation in the high-

salinity marsh was likely influenced by reduced methanogenesis in this traditional Blue Carbon 

ecosystem, whereas the lower salinity zones of high river connectivity and swamps probably emitted 

GHGs, but the rates were outstripped by the high levels of biological productivity in these systems 

(Gough and Grace 1998; Steyer 2008; Janousek and Mayo 2013). Future research considering a 

broader suite of GHG fluxes could further elucidate these patterns. A more thorough understanding of 

carbon fluxes in existing and restorable coastal wetlands is important because of the symbiotic 

relationship that wetland processes have with climate change. The fate of carbon in natural and 
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restored wetlands will be increasingly constrained by sea-level rise, salinity, and temperature, which 

in turn will be increasingly regulated by carbon cycling in wetlands. For instance, increasing 

temperatures will result in increased GHG emissions (wetlands become a major source of GHG), 

which in turn contribute to global warming (Kayranli et al. 2010). Many aspects of these processes 

are unknown, especially in the long-term function of restored wetlands. Few existing wetland 

restoration projects have the required age for adequate evaluation of function equivalency, therefore, 

future research should consider the use of analogs over longer periods of analyses for 

chronosequence assessments. Also, since the amount of carbon sequestration and release via 

numerous GHGs can be shifted by moderate changes to wetland systems, future studies should 

incorporate emissions measurements of at least CO2 and CH4 to provide a more complete assessment 

of carbon processes and balance within wetland restoration landscapes. Wetland restoration provides 

many opportunities to incorporate ecosystem structural and functional services. Though carbon 

sequestration is a relatively new focus of wetland restoration missions, it may prove to be one of the 

most critical for climate change management. 
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CHAPTER 4 – REDISTRIBUTION AND IMPACTS OF NEARSHORE BERM 
SEDIMENTS ON THE CHANDELEUR BARRIER ISLANDS, LOUISIANA 

 
 

INTRODUCTION 

Few areas in coastal Louisiana have suffered more drastic changes to shoreline position, 

geometry, and configuration than the barrier islands (Martinez et al. 2005a). Long-term interactions 

of sea level rise, subsidence, wave and storm damage, and oil and gas activities have resulted in 

extensive erosion and narrowing, which have led to a decrease in island habitat and reductions in 

storm-related surge and wave protection (Martin 2010; CPRA 2017). Most of these sensitive barrier 

systems are on the verge of collapse and are highly susceptible to additional pressures, including 

anthropogenic activities. 

On 20 April 2010, the United States encountered one of the largest marine oil spills in the 

Nation’s history. This accidental spill, caused by the failure of the Macondo-252 well and explosion 

of the Deepwater Horizon oil rig, resulted in the estimated release of 185 million gallons of crude oil 

into the Gulf of Mexico (Wilde and Skrobialowski 2011). As part of the emergency response plan, 

the Louisiana Office of Coastal Protection and Restoration (LOCPR) proposed sand berms to reduce 

the amount of oil reaching barrier islands, thereby protecting these highly sensitive ecosystems. 

Approximately 25.75 kilometers of sand berms were constructed at two locations, the “Western 

Barrier Berm” (WBB seaward of Shell, Pelican, and Scofield Islands) and the “Eastern Barrier Berm” 

(EBB offshore, nearshore, and onshore of the northern Chandeleur Islands) (Figure 4.1). Construction 

of the berms, which began and ended in June 2010 and March 2011, respectively, required 

approximately 4.7 million cubic meters (m3) of sand, and cost an estimated $250 million (Louisiana 

Legislative Auditor 2011, LOCPR 2015, CPE 2013a, 2013b, 2013c, 2013d). The berms were 

constructed with a +1.83 m North American Vertical Datum (NAVD88) crest elevation, 6.1 m crest 

width, and slopes of 1V:25H above and 1V:50H below the 121.9 m base at the -0.61 m elevation. 
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Figure 4.1. Location map depicting the Deepwater Horizon explosion site (inset), the 
Western Barrier Berm (Shell, Scofield, and Pelican Islands), Eastern Barrier Berm 

(Chandeleur Island), and sand borrow locations. 
 

Though the sand berms were constructed with the sole purpose of retarding oil from reaching 

sensitive ecosystem resources, they mimic nearshore beneficial use of dredged material (BUDM) 

applications that are utilized for barrier island nourishment and restoration. Nearshore berm 

placements are becoming an increasingly preferred option for dredged material placement since they 

typically have lower cost, restrictions, and design and construction complexity (Wang et al. 2016).  

However, since there are various site-specific issues associated with nearshore BUDM, and since 

there have not been many extensive studies on the performance of various types of nearshore 

placements, key knowledge gaps exist related to the evolution and impacts of nearshore berms (Wang 

et al. 2016). The oil-spill-mitigation berms provide multiple unique BUDM scenarios, including 
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offshore, nearshore, and onshore placements of sediment in high energy environments. These 

scenarios provide useful conditions for evaluating the stability and resilience of constructed sand 

berms to marine and coastal processes, and the impacts berm sediments have on wetland extent, 

productivity, and quality—all within the context of historical and recent conditions of Louisiana’s 

barrier islands. Recent studies have quantified and evaluated the stability of the oil-spill-mitigation 

sand berms, but the redistribution and impacts of those sediments on island habitat and vegetation are 

still uncertain. Therefore, the objectives of this study were to (1) evaluate the redistribution of EBB 

sediment within the northern Chandeleur Island system; (2) assess EBB impacts by evaluating the 

quantity and quality of existing and new emergent vegetation as a function of redistributed sediment; 

and (3) consider the implications of this research on future island restoration and nourishment.  

METHODS 

Study Area 

Though some preliminary comparisons were made between the EBB and WBBs, the primary 

study area consisted of the northern Chandeleur barrier island chain, approximately 96 kilometers 

east of New Orleans, Louisiana, and approximately 137 kilometers north of the Deepwater Horizon 

spill (Figure 4.1). The northern island arc has historically been dominated by wide beaches and large 

washover fans that were primarily vegetated by upland shrubs and grasses, and high salinity (20 to 40 

parts per thousand) marshes consisting largely of Spartina alterniflora (smooth cordgrass), Spartina 

patens (wiregrass), Juncus roemerianus (needlegrass rush), Disticlis spicata (saltgrass), and 

Avicennia germinans (black mangrove) (Fearnley et al. 2009; Hymel 2007; Kahn and Roberts 1982). 

The islands have experienced a long-term reduction in sand volume, a trend that has been accelerated 

by hurricanes, resulting in rapid erosion of island features (beach, dune, and marsh platforms) and the 

inability to maintain many subaerial features (US Army Corps of Engineers 2012). 
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Evaluations of berm and vegetation condition were performed using various assessment units, 

including the berm-specific footprint, and island-wide discrete vegetation sample locations and 

bounding assessment area (Figure 4.2). The berm footprint, which was delineated using the 

approximately 122 m wide slope break portion of the fill area (above -0.61 m elevation NAVD88), 

was used to assess berm performance (Suir et al. 2016). For island-wide assessments, multiple data 

sets consisting of discretely collected vegetation survey data were used to assess vegetation quantity, 

quality, and change over time (Figure 4.2). The island bounding assessment area consisted of 

approximately 457 m seaward and inland from the island centerline, and was used for raster-based 

analyses of sediment distribution and vegetation extent and productivity (Figure 4.2).  

 

 
 

Figure 4.2. Study area assessment units, consisting of discrete sample sites, the berm 
footprint, and the larger island assessment area. 
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Geographic Information Systems and Remote Sensing 

Given the remote location and limited field access to the Chandeleur Islands, Geographic 

Information Systems (GIS) and remote sensing data and techniques were ideally suited for this study. 

Remote sensing provides a means for classifying landscape features to assess the distribution and 

change of those features over time. The spatial analyses performed in this study evaluated the 

evolution of the oil-mitigation-berms and the impacts of berm sediment on island features and 

vegetation. The assessments of berm performance and sediment redistribution consisted of a 

synthesis of recent studies and elevation evaluations using newly acquired aerial photography, high 

resolution space-borne imagery, and light detection and ranging (LiDAR) data (Table 4.1). 

Assessments of habitat and vegetation utilized Barrier Island Comprehensive Monitoring (BICM) 

program habitat data (Fearnley et al. 2009; Martinez et al. 2005, 2006), existing National Wetlands 

Inventory (NWI) data (USGS 1980a, 1980b; USGS 2004), newly derived habitat and land-water data, 

satellite imagery derived Normalized Difference Vegetation Index (NDVI) data, and vegetation 

survey data. In addition to these data sets, other existing geospatial data (i.e., historical maps) and 

reports were used as ancillary interpretive information.  

Berm Performance 

The ability of the sand berms to maintain their form, in both elevation and length, were 

critical components for satisfying the primary project goal of retarding oil from reaching barrier 

island resources. A synthesis of recent berm studies and published data (i.e., elevation, length, and 

volumetric changes) were used to evaluate berm performance and evolution (CB&I 2013d; Plant and 

Guy 2013a, 2013b, 2013c; Suir et al. 2016). These berm performance assessments utilized survey 

elevation data, air- and space-borne imagery for length and segmentation evaluations, and volume 

changes to estimate overwash and longhore transport of sediment.  
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Table 4.1. Catalog of the data acquired, collected, and utilized for eastern barrier berm assessments. 
 

Data Collection       Source Program/System/Sensor Resolution/Accuracy 

Elevation 

Oct-01 USGS/NASA 2009 Airborne Topographic Mapper Lidar +/-15 cm 
Dec-05 Reif et al. 2011 Compact Hydrographic Airborne Rapid Total 

 
+/-20 cm 

Jun-07 Sallenger et al. 2015 Experimental Advanced Airborne Research Lidar +/-15 cm 
Mar-10 Nayegandhi et al. 2010 Experimental Advanced Airborne Research Lidar +/-15 cm 
Jun-11 USACE 2013 Compact Hydrographic Airborne Rapid Total 

 
+/-20 cm 

Feb-12 Guy et al. 2014 Leica Geosystems Airborne ALS60 +/-15 cm 
Jul-12 CPE 2103a,b,c,d RTK GPS Discrete 
Jul-13 Guy and Plant 2014 Leica Geosystems Airborne ALS70 +/-18 cm 

Feb-15 USGS 2016 Leica Geosystems Airborne ALS80 +/-15 cm 

Habitat 

1956 USGS 1980a NWI, Aerial Photography 1:24000 
1978 USGS 1980b NWI, Aerial Photography 1:24000 
1988 USGS 2004 NWI, Aerial Photography 1:24000 
1998 Fearnley et al. 2009 BICM, Aerial Photography 1:12000 
2004 Fearnley et al. 2009 BICM, Aerial Photography 1:24000 
2005 Fearnley et al. 2009 BICM, Aerial Photography 1:40000 
2008 USFWS 2016 NWI, Digital Mapping Camera 1:10000 

Vegetation 

1992 Handley et al. 2007 Color Infrared Aerial Photography 1:32500 
2010 NOAA 2012 Aerial Photography 1:24000 
2004 CPRA 2016 CWPPRA PO-27 Discrete 
2005 Martinez et al. 2006 BICM Discrete 
2013 BP 2004 Gulf Science Data  Discrete 

Imagery 

3/22/2004 DigitalGlobe QuickBird-2 2.4 m multispectral 
1/25/2005 DigitalGlobe QuickBird-2 2.4 m multispectral 

10/17/2005 DigitalGlobe QuickBird-2 2.4 m multispectral 
6/6/2007 DigitalGlobe QuickBird-2 2.4 m multispectral 

9/11/2008 USGS 2009 Digital Mapping Camera 1:10000 
5/24/2010 DigitalGlobe WorldView-2 1.84 m multispectral 

10/14/2010 DigitalGlobe WorldView-2 1.84 m multispectral 
5/6/2011 DigitalGlobe QuickBird-2 2.4 m multispectral 
5/7/2011 USGS 2011  Digital Mapping Camera 30 cm 

8/31/2011 DigitalGlobe QuickBird-2 2.4 m multispectral 
10/27/2011 DigitalGlobe QuickBird-2 2.4 m multispectral 

3/4/2012 DigitalGlobe QuickBird-2 2.4 m multispectral 
12/18/2012 DigitalGlobe GeoEYE 1.65 m multispectral 
11/12/2013 USDA/FSA 2013 Digital Mapping Camera 1:12000 

3/1/2014 DigitalGlobe GeoEYE 1.65 m multispectral 
5/5/2014 DigitalGlobe GeoEYE 1.65 m multispectral 

12/10/2014 DigitalGlobe WorldView-2 1.84 m multispectral 
2/10/2015 DigitalGlobe WorldView-3 1.24 m multispectral 
4/6/2015 DigitalGlobe GeoEYE 1.65 m multispectral 

12/14/2015 DigitalGlobe WorldView-2 1.84 m multispectral 
2/19/2016 DigitalGlobe WorldView-3 1.24 m multispectral 
4/22/2016 DigitalGlobe WorldView-3 1.24 m multispectral 
5/5/2016 DigitalGlobe WorldView-3 1.24 m multispectral 

6/21/2016 DigitalGlobe WorldView-2 1.84 m multispectral 
7/7/2016 DigitalGlobe WorldView-2 1.84 m multispectral 

 

Sediment Redistribution 

Currents, tides, waves, and wind energies are forces consistently eroding and redistributing 

barrier island sediments. The redistribution of berm sediments within the island system were assessed 

using LiDAR-based elevation data, existing NWI data, and habitat data that were generated using 

multispectral air- and space-borne imagery (Figure 4.1).  
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Elevation 

Table 4.1 provides the source, program, and accuracy specifications of the eight bare earth 

LiDAR data sets (2001, 2005, 2007, 2010, 2011, 2012, 2013, and 2015) that were used to evaluate 

elevation change across the northern Chandeleur Islands. LiDAR was also used to bracket the 

construction of the berm to assess spatial distribution of elevation changes on existing and newly 

formed island features. Digital Elevation Models (DEMs), with vertical resolution of approximately ± 

15 to 20 cm, were produced from the remotely sensed and geographically referenced LiDAR 

elevation measurements. These data provide accurate and highly detailed measurements of subaerial 

(bare earth) and in some instances, shallow subaqueous (shoal) Chandeleur Island features. To 

compute elevation differences between paired LiDAR data, the Spatial Analyst Minus tool was used 

in ArcGIS version 10.5. This tool was used to subtract values of the end-date raster from values of 

the begin-date raster on a cell-by-cell basis, producing an output raster containing difference or 

change values (ESRI 2015). These LiDAR based assessments were used to evaluate berm evolution 

(i.e., breaching and erosion) and the redistribution of berm sediments within the island system. 

Habitat 

A modified National Wetlands Inventory (NWI; Cowardin et al. 1979) classification scheme 

was used to evaluate the redistribution of berm sediments and develop a map of existing emergent 

vegetation features, while separately classifying unconsolidated features within various tidal regimes. 

This modified classification scheme, which consists of land, water, and unconsolidated shore classes, 

provides increased site- or condition-specific interpretations of target habitats. Within this 

classification scheme the “land” class consists of all uplands, dunes, vegetated dunes, emergent 

vegetation, and scrub-shrub features. The “water” class consists of open water and pond features. The 

“unconsolidated shore” class consists of substrate that fall in three traditional NWI subclasses, (1) 

irregularly flooded, (2) regularly flooded, and (3) irregularly exposed bottoms.  
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Comparing trends in historical and recently formed land and unconsolidated shore habitats 

provide measures of berm sand redistribution. The pre-construction assessments consisted of decadal 

or greater time-periods and the post-construction analyses generally consisted of shorter time-steps. 

However, the periods of analysis were ultimately based on data availability. The pre-construction 

data consisted of multiple dates of NWI sets (1956, 1978, and 1988) and multiple sets of BICM 

habitat data (1998, 2004, and 2005) (Table 4.1). All pre-construction habitat data were modified to 

conform to the land, water, and unconsolidated class scheme. The post-construction habitat data were 

derived using high resolution 2008 (USGS 2009), 2011 (USGS 2001), 2013 (USDA/FSA 2013), and 

2015 (DigitalGlobe GeoEYE) imagery (Table 4.1).  

The ratio and interface of land and water are some of the more important features and metrics 

of wetland landscapes. Therefore, this study also utilized land-water classification methodologies to 

evaluate wetland area change and trends during the post-construction period and compared those to 

the pre-construction (derived from habitat data) period. The satellite-based methodology is a variant 

of the standard procedures used for Coastwide Reference Monitoring System (CRMS) based land-

water classifications (Folse et al. 2014). This classification process utilized the Normalized 

Difference Water Index (NDWI) and the NDVI (method details provided in the vegetation section 

below) to identify water and wetland features, respectively. The traditional NDWI (McFeeters 1996), 

which normalizes a green band against a near infrared (NIR) band, is described by the following 

equation:  

NDWI =  𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺 − NIR
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺 + NIR

.                                                 (1) 

Recoding of the NDWI and NDVI (with and without edge enhancement) thematic files were 

performed through an overlay process. Clump and eliminate functions were then performed on each 

recoded file to reduce noise (Braud and Feng 1998; Suir et al. 2011). A final overlay was performed 

in which the NDWI and NDVI images were aggregated and recoded to single files with wetland and 
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water class. To evaluate the accuracy of land-water classifications, confusion matrices and Kappa 

values were computed for all paired habitat-based and satellite-derived wetland and water data. 

Vegetation  

Plant species composition, cover, density, and biomass are structural components of coastal 

marshes that are commonly used to quantify vegetative characteristics and serve as indicators of 

wetland condition (Chamberlain and Ingram 2012; Cretini et al. 2012). This study used standard 

vegetation assessments (i.e., distribution and composition), the Floristic Quality Index (FQI), and the 

Normalized Difference Vegetative Index (NDVI) as primary measures of condition and function. The 

FQI is a metric traditionally used to identify and monitor critical landscapes, assess impacts from 

disturbance events, measure wetland ecological condition, and evaluate habitat restoration 

(Bourdaghs et al. 2006; Fennessy et al. 2002; Gianopulos 2014). Similarly, the NDVI is commonly 

used to provide estimates of above-ground biomass, primary productivity and wetland species 

distributions, and assess impacts from anthropogenic activities and episodic events (An et al. 2013; 

Bianchette et al. 2009; Klemas 2013; Steyer et al. 2013).  

A modified FQI, one which incorporates invasive species, percent cover values, and accounts 

for total percent cover and overlapping canopies, was used to evaluate pre- and post-construction 

trends in Chandeleur Island wetlands. The FQI provides an estimate of habitat quality based on a 

measure of vulnerability, called the Coefficient of Conservatism (CC), and the richness or cover of a 

plant community (Gianopoulos 2014). CC values range from zero (not conservative) to ten 

(conservative and highly ecologically sensitive). Plant species are typically assigned CC values 

(within a local flora and by a panel of experienced botanists) based on the following characteristics: 

invasive plant species (CC value of 0), disturbance species (CC = 1 to 3), vigorous wetland 

communities (CC = 4 to 6), common species (CC = 7 to 8), and dominant wetland species (CC = 9 to 

10) (Bourdaghs et al. 2006). The FQI uses a two-pronged approach to account for sample units with 
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vegetation cover that is less than or equal to 100%, or is greater than 100% (overlapping canopies). If 

the sum of species covers within a sample unit at time t is less than or equal to 100, the applicable 

formula is as follows: 

FQImod 𝑡𝑡 = � ∑  (COVER𝑖𝑖𝑖𝑖 x CC𝑖𝑖)
100

 �  x 10, (2) 

where FQImod t is the modified floristic quality index (unitless), COVERit is the percent cover (%) 

for species i at a sample unit, within a sample site, at time t, and CCi is the Coefficient of 

Conservatism for species i (Cretini et al. 2011). 

By using 100 in the denominator (instead of the actual sum of species covers), differentiation 

between wetlands of similar composition (e.g., vigorous wetlands) can be made using normalized 

biomass (estimated through cover) (Cretini et al. 2012). For consistency with other restoration 

program (i.e., CRMS and Coastal Wetlands Planning, Protection, and Restoration Act [CWPPRA]) 

metrics and indices, the FQI values are multiplied by 10 to scale the scores from 0 to 100 (Cretini et 

al. 2011).  

If the sum of species covers within a sample unit at time t is greater than 100, the applicable 

formula is: 

FQImod 𝑡𝑡 = � ∑  (COVER𝑖𝑖𝑖𝑖 x CC𝑖𝑖)
∑  (TOTAL COVER𝑖𝑖)

 �  x 10,  (3) 

where TOTAL COVERt refers to the percent cumulative species cover (expressed as a percentage) 

within a sample unit (Cretini et al. 2012).  

The FQI assessments utilized existing vegetation survey data that were collected as part of the 

CWPPRA program (2001 to 2004), the BICM program (2005), and the BP Gulf Science initiative 

(2010 to 2013), which are represented by the green dots, yellow squares, and blue triangles in Figure 

4.2, respectively. The CC values and FQI equations (Eqs. 2 and 3), developed for Louisiana plant 

species (Cretini et al. 2011, 2012), were used to calculate average FQI values for each CWPPRA, 

BICM, and BP vegetation survey station. For species not on the Louisiana Coefficient of 
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Conservatism list (Cretini et al. 2011), established values from regional lists or neighboring states 

were used in conjunction with best judgement (Herman et al. 2006; Mortellaro et al. 2012; 

Gianopulos 2014). 

NDVI assessments were performed using GeoEYE, Quickbird, and WorldView satellite 

imagery collected during the pre- and post-construction periods (Table 4.1). These satellite images 

provide high spatial (1.24 to 2.4 m multispectral) and temporal (1-2 day sensor returns) resolution 

data that are useful for estimating short-term landscape variation linked to disturbance events and/or 

prevailing environmental conditions (Suir et al. 2011). All high-resolution satellite data were 

acquired using the DigitalGlobe Enhanced Viewer Web Hosting Service. ENVI version 5.3 was used 

to perform radiometric corrections on all satellite imagery. Optical inspections were then performed 

to identify and remove satellite images of poor quality. NDVI data were created using the standard 

equation (Rouse et al. 1974): 

NDVI =  𝑁𝑁𝑁𝑁𝑁𝑁2 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁2 + 𝑁𝑁𝑅𝑅𝑅𝑅

,  (4) 

which utilizes a ratio between a near-infrared (NIR) and red band to measure an ecosystem’s ability 

to capture solar energy and convert it to organic carbon or biomass (An et al. 2013). The NDVI has 

well established correlations to photosynthetic activity, aboveground biomass, and leaf area index 

(Carle 2013).   

NDVI values range from -1 to 1, where those between -1 and zero (0) are typical of non-

vegetation features (e.g., water, clouds, and impervious surfaces), and those between 0 and 1 are 

typical of vegetated features. The higher the NDVI value the higher, generally, the biomass, 

productivity, and vigor of the vegetation. All non-marsh features within the study area were excluded 

from each image by removing all NDVI values less than zero (< 0) (Reif et al. 2011). ESRI ArcGIS 

10.5 was used to calculate zonal statistics (i.e., mean, min, max, standard deviation) on values of each 

NDVI raster within the Chandeleur Island assessment area (ESRI 2015). 
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Statistical Analyses 

In order to attain comparability among values by year, statistical analyses were conducted 

using Statistical Analysis System software version 9.2. The PROC GLM procedure was used to 

perform a one-way analysis of variance (ANOVA) and a means separation test (Tukey’s, α = 0.05) to 

evaluate significance of differences between elevation, habitat, and vegetation values by year or 

period. Additionally, a linear regression with coefficient of determination (r2) was used to evaluate 

correlations between elevation, habitat, and wetland change over periods of analysis. 

RESULTS AND DISCUSSION 

Berm Evolution 

Table 4.2 provides the pre-construction, as-built, and 30-, 90-, 180-, and 360-day post-

construction survey elevation summary statistics for the EBB (Chandeleur Island) and WBB (Shell, 

Pelican, and Scofield Islands). The Chandeleur Island berm construction, which used approximately 

2,400,000 m3 of high quality quartz sand, increased the mean pre-construction height (within 

footprint) by 1.13 m (CPE 2013d). By the 360-day survey, approximately 24.1% of the Chandeleur 

berm sediments were lost beyond the project footprint (CPE 2013d). These losses were similar to 

those observed in the WBB, which experienced 41.6, 25.3, and 22.1% loss of sediment from the 

Shell, Pelican, and Scofield berms, respectively. However, not all segments of the EBB evolved 

equally. Previous research shows that over the course of a year the northern (offshore) section of the 

EBB experienced extensive thinning, breaching, and sediment loss, while the middle (nearshore) and 

southern (onshore) sections experienced more localized movement of sediment, resulting in widening 

of the sand berm (Plant et al. 2013a, b, c; Suir et al. 2016). All berm segments were significantly 

impacted by tropical storms. Tropical Storm Lee (26.4 meters per second [m s-1] and storm surge of 

approximately 1.2 m) made landfall on 3 September 2011 and Hurricane Isaac (35.7 m s-1 and storm 

surge of approximately 3.3 m) made landfall on 28 August 2012. Tropical Storm Lee initiated 
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breaching and overwashing of the EBB, and Hurricane Isaac resulted in the full eradication of all 

subaerial features (Brown 2011; Berg 2013; CPE 2013d). 

 

Table 4.2. Field survey-based elevation and volume change along the western and eastern berm. 
 

Berm Survey Date Count 

Elevation (m NAVD)  Volume Change 

Min Max Mean STD 
 Within 

Period 
 

Percent of 
As-built 

Shell 

Pre Jul-10 1069 -1.89 -0.12 -0.99 0.46  - - 
As-built Dec-10 304 -1.04 1.80 0.59 0.65  751,847 

-41.6 
30 Feb-11 632 -1.55 1.58 0.38 0.70  -96,631 
90 Apr-11 571 -1.74 1.49 0.20 0.77  -87,437 

180 Jul-11 1098 -1.55 1.25 0.48 0.56  131,533 
360 Jan-11 724 -1.62 1.10 -0.07 0.79  -

 

Pelican 

Pre Jul-10 1571 -1.92 1.10 -0.81 0.47  - - 
As-built Oct-10 684 -1.19 1.95 0.75 0.76  936,580 

-25.3 
30 Jan-11 659 -1.28 1.71 0.49 0.73  -

 90 Mar-11 740 -1.62 1.58 0.53 0.63  20,731 
180 Jul-11 1190 -1.62 1.55 0.56 0.63  20,136 
360 Jan-12 1229 -1.58 1.34 0.36 0.64  -

 

Scofield 

Pre Jul-10 2477 -1.80 1.01 -0.78 0.43  - -  
As-built Dec-10 675 -1.80 1.74 0.19 0.91  900,647 

-22.1 
30 Feb-11 1420 -1.95 1.65 0.25 0.83  52,227 
90 May-11 1930 -1.58 1.55 -0.18 0.84  -

 180 Aug-11 1791 -1.52 1.49 0.11 0.81  268,356 
360 Feb-12 1697 -1.49 1.46 -0.02 0.76  -

 

Chandeleur 

Pre Jul-10 1828 -3.29 0.40 -0.66 0.58  - - 
As-built May-11 1957 -3.35 2.38 0.47 0.82  2,306,6

 
-24.1 

30 Jul-11 5613 -1.98 2.26 0.61 0.75  289,567 
90 Sep-11 3419 -2.41 2.04 0.19 0.76  -

 180 Jan-12 3533 -2.99 1.65 0.20 0.80  15,239 
360 Jul-12 3140 -3.02 1.58 0.20 0.79  1,178 

 

Sedimentation 

Feature Elevation 

Table 4.3 provides a summary of the LiDAR-derived bare earth elevation data for the 

northern Chandeleur Islands from 2001 to 2015. This table provides a general overview of island 

elevation and elevation changes that occurred on existing and newly created island features adjacent 

to the EBB. Though some of the LiDAR collections included shallow subaqueous features, all sets 

were standardized by excluding data with elevations below 0.0 m (NAVD). The 2001 landscape 
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consisted of island features with a maximum elevation of 3.66 m (NAVD) and an overall average 

height of 0.47 m. These low-lying island features are indicative of a system that was sediment 

deprived and increasingly susceptible to additional disturbances (FitzGerald et al. 2016; Sherwood et 

al. 2014). A large disturbance event, Hurricane Katrina (77.8 m s-1, storm surge 7.3 to 8.5 m; Knabb 

et al. 2005), which made landfall on 29 August 2005, significantly reduced the mean elevation of the 

Chandeleur Islands to 0.34 and 0.33 m in 2005 and 2007, respectively. A slight recovery in elevation 

was observed in 2010, prior to the construction of the EBB in 2011, which increased the maximum 

and average elevations of the island/berm complex to 3.8 and 0.63 m, respectively. Impacts from 

Tropical Storm Lee and Hurricane Isaac breeched and overwashed the berm, redistributing large 

volumes of sediment (within and out of the island system), thereby reducing the average island 

elevation to 0.39 m by 2013. Table 4.3 also shows the island average elevation remained relatively 

stable between 2013 and 2015, increasing slightly from 0.39 to 0.4 m. 

 

Table 4.3. Light Detection And Ranging (LiDAR)-derived bare earth elevations for northern 
Chandeleur Island subaerial features. 

 

Island 
  

Date 
  

Period 
  Elevation (m NAVD) 

      Min   Max   Mean   Std 

Chandeleur 

 Oct-01  Pre-Construction  0.00  3.66  0.47  0.43 
 Dec-05  Pre-Construction  0.00  1.35  0.34  0.22 
 Jun-07  Pre-Construction  0.00  2.39  0.33  0.22 
 Mar-10  Pre-Construction  0.00  2.35  0.42  0.33 
 May-11  Construction  0.00  3.80  0.63  0.31 
 Feb-12  Post-Construction  0.00  3.04  0.47  0.32 
 Jul-13  Post-Construction  0.00  2.90  0.39  0.24 
  Feb-15   Post-Construction   0.00   3.14   0.40   0.30 

 

The location, distribution, and change of elevations across the northern Chandeleur Islands 

from 2007 to 2015 are shown in Figure 4.3. Panels A, C, and E represent the bare earth elevations (in 

meters) in 2007, 2011, and 2015, respectively. For these panels the elevations range from -0.3 

(included to identify shallow subaqueous shoals) to 3.8 m (maxima in 2011). The elevation values are 
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also color ramped, where dark browns represent lower elevations, dark blues represent higher 

elevation features, and the remaining represent mid-range elevations. The 2007 Chandeleur Island 

(Figure 4.2A) consisted of a post-Hurricane Katrina impacted landscape that was dominated by 

breaches and low relief features. Figure 4.2C represents 2011 elevations along the newly constructed 

berm and existing island features. These new berm features, which are represented by the light to 

dark blue regions at the eastern edge of the Island’s beach, closed many of the island’s existing 

breaches and passes. Figure 4.2E represents island feature elevations in 2015, approximately four 

years post-construction of the EBB. This panel illustrates the storm related overwashing of the EBB, 

which resulted in the breaching, thinning, and redistribution of berm sediment onto and bayside of 

existing island features (large brown regions). 

In Figure 4.3, panels B and D represent elevation change between paired dates. The values in 

these panels are also color ramped, where red represents the largest reductions in elevation, and dark 

green represents the largest increases in elevation. Panel B illustrates the elevation changes that 

occurred between June 2007 and May 2011. Significant increases in elevation (dark green) were 

observed along the constructed berm feature. The light green regions in Panel B represent more 

moderate increases in elevation along existing island features, which are indicative of sediment 

redistribution that occurred during berm construction. Between 2007 and 2011, the maximum and 

mean elevations in the northern Chandeleur Island system increased by 1.41 and 0.3 m, respectively. 

Figure 4.3D illustrates the change in elevation between May 2011 and February 2015. Red features 

along the eastern edge of the island represent berm segments that experienced significant reductions 

in elevation. Most of those reductions were due to the overtopping and redistribution of sediment 

within the system. Also visible in Panel D are large areas of increased elevation, which appear as 

green features west of the berm footprint. These are primarily shallow shoals that are detectable with 

LiDAR data, however there are large areas of deeper irregularly exposed shoals that were created 
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after the construction of the EBB. These features were identified and digitized during the habitat 

classification process. It is assumed that these areas (represented by the dark gray polygons in Figure 

4.3B and 4.3D) are the result of redistributed berm sediments.   

 

 
 

Figure 4.3. Chandeleur Islands sand berm project area Light Detection And Ranging (LiDAR) 
elevations and elevation change between March 2007 and February 2015. Deeper shoaled areas are 

represented by dark gray polygons in panels B (2011 shoals) and D (2013 shoals). 
 

The 2007, 2011, and 2015 LiDAR data were also used to create elevation profiles along a 

1,650 m transect (start and stop locations represented by A-A’ in Figure 4.3) that traversed existing 

and newly created island features (Figure 4.4). The 2007 profile (black line in Figure 4.4) shows the 

island consisted of low relief subaerial beach, dune, and tidal marsh features, as well as subaqueous 
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features within and adjacent to the tidal marsh. By 2011 (red line in Figure 4.4) the island 

experienced an elevation increase due to the construction of the sand berm and redistribution of 

dredged sediments. The largest increases in elevations in 2011 are observed within the berm footprint 

(near station 1,400+50) and extending to the landward side of the dune (near station 1,200+00). Many 

of the existing tidal marsh features also experienced increases in elevation (though some changes are  

potentially due to LiDAR returns through dense vegetation), except for the most westward area of 

marsh, which experienced wetland loss between stations 100+20 and 200+75. By 2015 (green line in 

Figure 4.4) large quantities of berm sediments were redistributed onto dune features and into 

overwash regions of the island between the dune and the back barrier wetlands (between stations 

1,000+00 and 1,200+00). The 2015 tidal marsh elevations primarily ranged between the 2007 and 

2011 elevations, however, some marsh elevations (nearest the overwash and dune features) were 

highest in the 2015 profile.   

Habitat Change 

Figure 4.5 provides historical and recent perspectives on the type, extent, and change of 

wetland (NWI derived wetland class represented by black diamonds) and unconsolidated shores 

(represented by gray squares) along the northern Chandeleur Islands. Air- and space-borne imagery-

derived wetland and water data, from 2004 to 2015, were also used to assess the overall accuracy of 

the habitat derived wetland data, and to provide a more robust and higher temporal estimate of 

wetland change over time. Figure 4.5 shows high levels of agreement between the NWI-derived data 

(black diamonds) and the satellite imagery-derived wetland data (white dots). The overall 

classification accuracy for the paired wetland and water data was 91 percent (kappa = 0.82). Minor 

difference between these data sets are potentially due to varying resolution (grain size) between data 

sets, and varying water level at the time of data acquisition. These conditions can be influential where 

large areas of submerged aquatic vegetation and shallow unconsolidated shores are present.  
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Figure 4.4. Chandeleur Islands elevation profiles from the 2007 (black line), 2011 (red line), and 
2015 (green line) LiDAR data. Reference Figure 4.3 for elevation profile transect line. 

 

In 1956, the northern Chandeleurs were a stable and productive island system, consisting of 

approximately 19.1 km2 of wetland (dominated by saline marsh and scrub/shrub habitat), and 

approximately 10.6 km2 of unconsolidated shores (Figure 4.5). However, during the period from 

1956 to 1978, the island experienced significant erosion and habitat loss (-0.75 km2 yr-1) due largely 
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to the forces of Hurricane Camille (73.8 m s-1, 6.9 m storm surge; USACE 1970), which made 

landfall on 17 August 1969. The rate of habitat change remained relatively constant in subsequent 

periods, until reaching a rate of –5.4 km2 yr-1 between 2004 and 2005. The rate of habitat loss within 

this period was directly related to impacts from Hurricanes Katrina and Rita (79.1 m s-1, 

approximately 2 m storm surge, 24 September 2005; Knabb et al. 2006). From 2005 to 2010 (pre-

berm) the island's land features continued to erode, albeit, at a reduced rate of loss (-0.27 km2 yr-1), 

while the unconsolidated shores experienced significant post-storm gains, increasing from 0.35 km2 

in 2005 to 6.1 km2 by 2008. The gains in unconsolidated shores during this period are probably due 

to storm-induced relocation of beach and dune sediments. Figure 4.5 also shows the period of berm 

construction (gray bar), and subsequent change in wetland and unconsolidated shore areas. By 2011, 

the total habitat area (land and unconsolidated shores) increased to approximately 13.8 km2, of which, 

the newly constructed berm accounted for approximately 2.6 km2 (LOCPR 2011). During the four 

years following the construction of the EBB, increases in wetland and unconsolidated shore areas 

were observed. Though these increases are moderate, +0.52 km2 yr-1 and +0.38 km2 yr-1 for wetland 

and unconsolidated shores, respectively, they reverse the long and substantial loss trends that have 

occurred since the 1950s. 

Trends observed in Figure 4.5 largely corroborate those that were observed in Figure 4.3, with 

one discrepancy. Figure 4.5 shows a large increase in unconsolidated shores in 2011 that are not 

observed in Figure 4.3. This is potentially due to deeper shoals that were detected and classified in 

the habitat assessments but were not detectable using LiDAR. This assumption is further supported 

by the inclusion of deeper shoal areas in Figure 4.3, which are represented by the dark gray polygons 

in Panels B (2008 shoals) and D (2013 shoals). Based on the observed horizontal and vertical 

accumulation of sediment within the Chandeleur Island system, the EBB has provided 

geomorphological benefits to existing and newly created features.  
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Figure 4.5. Summary of change in historical and recent habitat (modified) area along the 
northern Chandeleur Islands. Unconsolidated shores include beach, shore and flats (from 

historical data sets), and the irregularly flooded, regularly flooded, and irregularly exposed 
classes (derived from recent data sets). 

 

Vegetation Impacts 

Few studies have assessed the impacts of nearshore BUDM on wetland vegetation quantity, 

quality, and productivity. Therefore, standard vegetation assessments (i.e., distribution and 

composition) were used in conjunction with NDVI and FQI metrics to evaluate the condition, 

performance, and evolution of wetland plants during three berm-related periods of analysis (pre-

construction, construction, and post-construction periods).  

Normalized Difference Vegetative Index 

 Figure 4.6 illustrates the mean values and trajectory of NDVI data within the island 

assessment unit. These represent all qualifying data, regardless of season, across three distinct 

periods, the pre-construction (white dots), construction (gray dots), and post-construction (black dots) 

periods. The mean NDVI values ranged from 0.31 in 2005 (pre-construction of the EBB) to 0.75 in 

2015 (post-construction). The mean NDVI values by period were 0.41 ± 0.13, 0.54 ± 0.17, and 0.56 ± 
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0.18, for the pre-construction, construction, and post-construction periods, respectively. The mean 

NDVI values for all three construction phases were significantly different (p<0.05).  

The lower mean NDVI values during the pre-construction period, specifically those in 2005, 

were largely due to disturbance events (i.e., hurricanes). Regardless of impacts, these pre-

construction period values (0.41) were higher than those previously computed for saline marsh (0.36) 

in coastal Louisiana (Suir et al. unpublished). By 2007, the Chandeleur Islands experienced some 

post-hurricane recovery of vegetation productivity (Figure 4.6). These data corroborate previous 

studies which report post-hurricane vegetative recovery typically occurs by the end of the next full 

growing season (Carle et al. 2015; Steyer et al. 2013). The dashed line in Figure 4.6 shows the 

general increasing trend in NDVI values across the construction and post-construction periods. 

Existing northern Chandeleur Island marsh experienced increased productivity that is probably due to 

elevational benefits (increased productivity with shallow marsh burial and reduced flooding stress) 

and increased nutrient levels (ammonium and phosphate sorbed to clay fractions) that occurred 

during the placement of EBB sediments (Walters and Kirwan 2016). The post-construction period 

began with tropical storm and hurricane impacts (Tropical Storm Lee and Hurricane Isaac) to existing 

island features, which resulted in the slight reductions in NDVI values in 2011 and 2012. However, 

from 2014 to 2016 the barrier island assessment area experienced vegetative recovery and increases 

in NDVI values. The average NDVI change rate for the post-construction period was +0.13 per year. 

The Chandeleur Islands experienced an overall increasing trend in NDVI (productivity), resulting in a 

change rate of approximately +0.02 per year, and a moderate r2 (coefficient of determination) of 0.45 

across the entire period of analysis (2004 to 2016). 

The NDVI data were also used to evaluate the spatial variability and patterns of vegetative 

productivity, and the rate of change on a pixel-by-pixel basis. Since the influence of seasonality 

(temperature and sunlight) on plant productivity is well established (Ramsey and Rangoonwala 2016; 
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Sasser et al. 1995; Steyer et al. 2008), only NDVI data from within the growing season (May to 

September), and those acquired during and after construction of the EBB, were used to evaluate berm 

sediment impacts on aboveground biomass. 

 

 
 

Figure 4.6. Average Normalized Difference Vegetation Index values by year for the pre-
construction, construction, and post-construction periods. 

 

Figure 4.7 shows the slope or change rate of NDVI across all qualifying data within the 

construction and post-construction periods of record. The NDVI rates of change are color ramped in 

Figure 4.7, where the yellow-to-orange-to-red colors represent decreasing rates of NDVI over time, 

and the green-to-blue colors represent increasing rates of NDVI over time. The majority of the 

northern Chandeleur Islands experienced low to moderate increasing rates of NDVI values over the 

period of analysis (2010 to 2016). Generally, existing island features experienced low increasing rates 

of NDVI (green pixels), while some of the newly created wetland features experienced the highest 

increasing rates (blue pixels). Few areas, namely the berm, island dune, and ephemeral shoals, 

experienced loss rates (oranges and red pixels). These loss features were either located in high energy 
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positions or at elevations that are not ideal for emergent wetland persistence. Comparing Figure 4.7 to 

Figure 4.3 (Panels C and E) it is apparent that not only have the areal extent of shoals increased, but 

by 2016, many of those shoals had vegetated and experienced increasing plant productivity. 

Therefore, it is a reasonable conclusion that the redistributed EBB sediments have provided elevation, 

structural, and nutrient benefits to existing Chandeleur Island wetland features. The EBB sediment 

have also created new platforms and enhanced existing platforms, resulting in significant wetland 

plant colonization and productivity. 

Floristic Quality Index 

The FQI combines vegetative quantity and quality to provide measurements of vegetation 

condition and maturity. Low FQI values can be indicative of early successional vegetation 

communities, post-disturbance evolution, or other presses or pulses that are negatively impacting 

natural or restored wetlands. Conversely, high FQI values are more typical in mature, stable, and un-

disturbed wetlands. As mentioned previously, the FQI is composed of two components, the average 

plant abundance (i.e., cover value percentage) by species, and the average Coefficient of 

Conservatism. Figure 4.8 provides both FQI components, separately, for each sampling session 

within the three periods of analysis, pre-construction (2001 to 2005), construction (2010 to 2011), 

and post-construction (2011 to 2013). The vegetation surveys conducted in 2001 show the sampled 

island features contained nominal amounts (1.2% to 1.6% cover) of Spartina alterniflora 

(saltmeadow cordgrass). The degraded conditions of the Chandeleur Islands at that time were a result 

of Hurricane Georges (30 m s-1, 2.7 m storm surge, 28 September 1998; Guiney 1999), which 

significantly breached the island and reduced emergent features by approximately 40 percent (Hymel 

2007). In 2001, as part of the CWPPRA PO-27 project, a total of 80,730 Spartina alterniflora plants 

were installed to provide stability to approximately 1.5 km2 of unvegetated overwash fans 

(LCWCRTF 2004). The Spartina alterniflora communities expanded, increasing to average cover 
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values of 28%, 36.3%, and 48.7% in 2002, 2003, and September 2004, respectively. In addition to 

increasing Spartina alterniflora cover, the islands also experienced a significant increase in overall 

cover, driven primarily by the establishment of disturbance (Amaranthus australis [southern 

amaranth]), vigorous (Batis maritima [turtleweed], Iva frutescens, Salicornia bigelovii, Sesuvium 

portulacastrum, and Suaeda linearis), common (Salicornia depressa), and dominant (Distichlis 

spicata [Coastal Salt Grass]) wetland species in 2003 and 2004. Disturbance and vigorous plants are 

opportunistic species and often serve as indicators of disturbed or stressed systems. The level of 

disturbance within the system is illustrated by the reduction in CC value between October 2002 and 

September 2004 (Figure 4.8). Due to Spartina alterniflora monocultures, the sample sites had early 

sampling period CC scores of 10. However, an insurgence of ruderal plants (i.e., invasive, 

disturbance, and vigorous species) after Hurricane Georges resulted in lower CC scores (8.6 and 8.3).  

Similar trends to Hurricanes Georges were observed with Hurricane Ivan (49 m s-1, 1 m storm 

surge; Stewart 2004), which made landfall on 16 September 2004. Hurricane Ivan significantly 

impacted the Chandeleur Islands, resulting in dramatic declines in vegetative cover by December 

2004, and subsequent establishment of dominant and opportunistic species by March 2005. The 

average cover of Spartina alterniflora (the dominant species) were reduced during this Post-Ivan 

period, decreasing from 48.7% to 32.7% by December 2004, and 9.3% by March 2005. While 

Spartina alterniflora communities diminished during this period, other common and dominant 

species (Avicennia germinans, Spartina patens, Juncus sp, and Distichlis spicata) proliferated, 

reducing the CC score to 6.9 by March 2005. Though no in situ vegetation collections occurred 

between March 2005 and November 2010, the Island experienced significant storm impacts from 

Hurricanes Katrina and Rita. It is suspected the Island underwent similar, if not more severe, 

vegetative trends to those encountered after Hurricanes Georges and Ivan. 
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Figure 4.7. Post-construction (2010 to 2016) Normalized Difference Vegetative Index 
(NDVI) change rate (per-pixel) within the northern Chandeleur Islands.  
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Figure 4.8. Percent cover and Coefficient of Conservatism (CC) values for species within 
the Northern Chandeleur Island assessment unit. CC values for each plant species are 

provided in parenthesis. 
 

Five vegetation sampling sessions occurred during the construction (November 2010 and May 

2011) and post-construction (October 2011, November 2012, and November 2013) periods of 

analysis (Figure 4.8). During both periods the sample sites consisted of stable cover values that were 

dominated by Spartina alterniflora (minimum of 11.1% in 2013 to a maximum of 16.9% in October 

2011) and Avicennia germinans (minimum 14.0% in May 2011 to a maximum of 34.7% in 2013). 

The construction and post-construction periods also saw moderate cover by Batis maritima and 

Salicornia bigelovii. Though the construction and post-construction periods experienced moderate to 

severe storm events, the typical shift to disturbance vegetation type and cover were not observed. 

This could be a result of increased stability incurred by the redistribution of EBB sediments and the 

recent increase in foundation species. Foundation species, like Spartina alterniflora and Avicennia 

germinans provide many benefits, but few more important to the Chandeleur Islands than soil 
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stabilization and storm protection (Diskin and Smee 2017). The vegetative stability across the 

Chandeleur Island sample sites during the construction and post-construction periods are evidenced 

in the CC scores in Figure 4.8. The CC scores across these five sample periods ranged from 7.9 to 

8.5. Minimal fluctuations in CC scores are indicative of a stable system that either did not experience 

severe disturbance events, or was able to adequately resist disturbances.  

Figure 4.9 provides the average FQI scores for each sampling site across the 2001 to 2013 

period of record. The average FQI scores during the pre-construction, construction, and post-

construction periods are represented by the white, gray, and black dots, respectively. Figure 4.9 also 

includes two trend lines, one for the pre-construction period, and one that covers the construction and 

post-construction periods. In the pre-construction period the average FQI by sampling session ranged 

from 1.24 in 2001 to 51.75 in 2004. The FQI trend during this period was one of significant increase 

(+0.036 per day), which was initiated primarily by post-disturbance increases in vegetation 

colonization and recovery. During this pre-construction period there was a moderate positive 

correlation (r2 = 0.398) between FQI and time. Since there is significant variability in sample site FQI 

scores from 2002 to 2005, this correlation was probably driven by the lower and less variable FQI 

values in the early part of the period.  

The average FQI scores for sampling sessions within the construction and post-construction 

periods ranged from 36.8 in 2010 to 51.6 in 2013. Compared to the pre-construction trend, the 

trajectory between 2010 and 2013 was a moderate increase in average FQI (+0.009 per year). This is 

in spite of climate events that significantly impacted the island during the post-construction period. 

The combination of moderately increasing FQI scores and cover values is indicative of a system that 

was stabilizing (relative to historical trends of degradation) during the construction and post-

construction periods. The mean FQI scores across all periods were lower than the ideal range (>80, 

preliminarily established by Cretini et al. 2011) for saline marsh in the inactive deltaic plain. 
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However, Suir and Sasser (2016) surmised that lower ideal ranges of FQI (between 50 and 70) might 

be more reasonable, especially in degrading wetlands, recently restored wetlands, or landscapes with 

recent disturbance events. 

 

 
 

Figure 4.9. Modified Floristic Quality Index (FQImod) scores for all survey stations within 
the Northern Chandeleur Island assessment unit by year and construction period.  

 

CONCLUSIONS 

The purpose of this study was to evaluate EBB sediment impacts on northern Chandeleur 

Island features. To satisfy these objectives, GIS and remote sensing data and techniques were used to 

(1) evaluate the redistribution of EBB sediment within the island system; (2) assess EBB impacts by 

evaluating the quantity and quality of existing and new emergent vegetation as a function of berm 
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sediment; and (3) consider the implications of this research on future island restoration and 

nourishment. 

Though the EBB didn’t fulfill its primary mission of retarding oil (National Commission on 

the BP Deepwater Horizon Oil Spill and Offshore Drilling 2011; Suir and Sasser 2016), it did serve 

as a BUDM application that introduced sediment into a sediment- and elevation-deficient system. 

However, the Chandeleur beach/dune system is much lower in elevation than most mainland and 

barrier island beach/dune systems where BUDM would be typically practiced (most BUDM 

nearshore placement applications occur near robust beach/dune systems). Yet, the dissipation of the 

EBB is consistent with known nearshore berm processes, where sediment quickly migrates from the 

placement site to the resource (shoreline) it was intended to protect/nourish and beyond. EBB 

sediments were redistributed within and out of the Island system via marine and climate processes 

(i.e., storm induced scouring, breaching, overwashing).  

Ultimately, the EBB sediments provided elevational lifts to existing back barrier island 

wetlands and shoals, and in some areas created new shoals in overwash and drift zones. The 

evolution and redistribution of EBB sediments were observed through elevation and habitat change 

assessments. Historical assessments (1956 to 2005) showed the island experienced severe storm-

induced degradation and sediment deficiencies, which resulted in the thinning and lowering of all 

island features. Assessments using recent data (2010 to 2016) showed significant increases in the 

horizontal and vertical extent of existing and newly created features. These changes are largely due to 

the influx of high quality quartz sediments that were redistributed from the EBB. These sediments 

provided new shoal areas for vegetation establishment and elevational (shallow marsh burial and 

reduced flooding stress) and nutrient (ammonium and phosphate sorbed to clay fractions) benefits 

that resulted in increased vegetation productivity. The redistributed sediments also encouraged island 
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feature stability, both in the maintenance of areal extent and the quantity and quality of vegetation 

present (i.e., foundational species).  

Future work should investigate and monitor the long-term impacts of berm sediment and oil 

on existing critical (submerged aquatic vegetation) and sensitive Chandeleur Island habitat. These 

data would be necessary to evaluate the impacts of future disturbance events on post-construction 

island structure and functions. Results from this study could be used by resource managers and 

decision makers to identify and plan future nearshore BUDM applications, particularly in atypical 

environments and systems.  
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CHAPTER 5 – USE OF REMOTE SENSING AND FIELD DATA TO 
QUANTIFY THE EFFECTS AND RESILIENCE OF DREDGED SEDIMENT 

USED FOR ECOSYSTEM RESTORATION 
 
 

INTRODUCTION 

In the last half century, research has shown that wetlands are among the most productive and 

beneficial ecosystems in the World (Moreno-Mateos et al. 2012). Wetlands provide benefits that 

range from regulating services (i.e., floods and drought), supporting services (i.e., soil formation and 

nutrient cycling), provisioning services (i.e., food and freshwater); cultural services (i.e., recreational 

and aesthetics), to ecosystem services (i.e., high biological productivity and critical habitat) 

(Millennium Ecosystem Assessment 2003; USACE 2013). With an increasing understanding of 

wetland importance, Federal and State governments have enacted a number of policies, regulations, 

and incentive programs to directly and indirectly protect, maintain, and restore the wetlands of the 

United States (Votteler and Muir 1996). 

In the United States, restoration efforts rapidly developed into large authorities and programs 

such as the Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA), the United 

States Army Corps of Engineers (USACE) Beneficial Use of Dredged Material (BUDM) program, 

and many State led wetland restoration programs. In Louisiana, CWPPRA and BUDM programs 

have collectively created or benefited nearly 40,000 hectares of wetlands (Louisiana Coastal 

Wetlands Conservation and Restoration Task Force [LCWCRTF] 2015). Additionally, the Coastal 

Protection and Restoration Authority (CPRA) of Louisiana conservatively estimates (depending on 

future coastal conditions) approximately 150,000 hectares of wetlands will be created or nourished as 

part of its Louisiana Coastal Master Plan (Coastal Protection and Restoration Authority of Louisiana 

2012). 

Typical goals of wetland restoration efforts are to conserve, create, or enhance wetland form; 

and to achieve wetland function that approaches natural conditions. Though wetland form and 
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function are driven by many presses and pulses, the dominant factors include elevation, hydrology, 

sedimentation, and vegetation (Steyer et al. 2008b). For a constructed wetland, failure to adequately 

account for or maintain one of these elements can have negative implications on other elements, and 

ultimately on overall wetland condition. Wetland condition has traditionally been evaluated using a 

system’s structure and/or ability to perform a suite of functions (Cohen et al. 2004). Measures of 

wetland condition have been used to monitor and assess wetland performance, resilience, and 

adaptive management needs. However, monitoring wetland condition can be time-intensive, costly, 

and often requires repeat surveys with high precision data about the landscape, land cover, 

species/habitat composition, change detection, degradation, diversity, as well as system threats and 

pressures.  

There are three basic levels of wetland monitoring and assessment: (1) landscape assessment 

– which consists of coarse inventory information that is acquired and assessed using geographic 

information system (GIS) and remote sensing techniques; (2) rapid assessments – which are site 

specific analyses using regionally derived and relatively simple and rapid protocols (e.g., Louisiana 

Wetland Rapid Assessment Method [LRAM]); and (3) intensive site assessments – consisting of 

research derived, multi-metric indices that give detailed information about wetland function (e.g., 

Hydrogeomorphic [HGM] Approach) (U.S. Environmental Protection Agency [USEPA] 2002b). 

Regardless of level, each assessment type provides metrics and indices that translate into descriptions 

of biological condition (Karr and Chu 1997). Landscape assessments provide useful information 

when evaluating wetland change trajectories or analyzing direct episodic impacts across larger spatial 

and temporal scales. However, they may be inadequate for analyzing complex and dynamic systems. 

Conversely, intensive site assessments provide detailed information that are necessary for analyzing 

complex systems, but these assessments are customarily labor and resource intensive; and unless high 

levels of detail are required, they can be unnecessary and impractical. Rapid assessments are useful 
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when general site-specific wetland ecological conditions are required. Combining aspects from each 

type of wetland evaluation provides biological indices that measure or estimate wetland quantity and 

quality.  

When measuring wetland function and condition, plants are excellent indicators due to their 

rapid growth rates and direct response to environmental stressors and disturbances (Cohen et al. 

2004; Mack 2007; Smith et al. 1995; USEPA 2002a). Specifically, plant species composition, cover, 

density, and biomass are structural components of coastal marshes that are commonly used to 

quantify vegetative characteristics and often serve as indicators of wetland condition (Chamberlain 

and Ingram 2012; Cretini et al. 2012). Although these structural components are useful for 

quantifying and comparing wetland characteristics, they lack qualitative measures that are necessary 

for more comprehensive assessments of wetland function. Wetland plant quality can be an essential 

metric because it provides critical information related to habitats, effectiveness of restoration 

measures, resilience to disturbance events, and adaptive management needs and priorities (USEPA 

2002a). 

The overall goals of this study were to assess methods for determining practical indicators of 

wetland condition, including vegetative abundance (productivity), species composition (biodiversity), 

and wetland robustness (long-term resilience or resistance to structural or functional change). 

Specifically, the objectives of this study were to utilize remotely sensed and field collected data to: 

(1) evaluate and compare structural changes of restored wetlands to naturally occurring reference 

wetlands; (2) quantify the quality and functional changes of restored wetlands and compare to 

reference wetlands; and (3) assess the resilience and recovery of restored wetlands to short-term 

episodic events (i.e., tropical storms and salinity spikes).  
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METHODS 

This study utilized established methods, along with field- and remotely-collected data, to 

assess restored wetland structure, function, and resilience, and compare those to reference wetlands.  

Study Area 

The Sabine Refuge Marsh Creation CWPPRA (CS-28) restoration project, and surrounding 

areas, were selected as the study and reference sites, respectively (Figure 5.1). These study and 

reference areas consist primarily of brackish wetlands that are located west of the Calcasieu Ship 

Channel near Hackberry, Louisiana (Figure 5.1). This area, which was severely impacted by 

hurricanes and canal building, experienced significant conversion from wetlands to open water 

between 1956 and 1978 (Miller 2014a). Efforts to restore the area wetlands comprised five separate 

dredging cycles and creation sites (ranging in size from 51 to 93 hectares [ha]) within an open water 

area of approximately 1,150 ha. The creation sites, known as Cycles 1-5, were constructed in 2002 

(Cycle 1), 2007 (Cycle 3), 2010 (Cycle 2), 2014 (Cycle 4), and 2015 (Cycle 5), respectively. Using 

approximately 3.4 million m3 of dredged material (sediment from the Sabine National Wildlife 

Refuge disposal facility, which consisted of approximately 40% sand and 60% fines), the cycles were 

constructed to an initial height of +0.82 to +0.94 m North American Vertical Datum 1988 (NAVD88, 

Geoid 99). The placement of dredged material was similar for all Cycles, expect for Cycle 2, where 

material was allowed to overflow the western dike, resulting in a large “overflow area” (Figure 5.1). 

Placed dredged material was allowed to consolidate and desiccate to a final target elevation of 

approximately +0.37 m NAVD88 (Sharp 2003; USACE 2005; Miller 2014a). The Cycles differ in 

that Cycle 1 was planted with approximately 36,000 Spartina alterniflora (saltmeadow cordgrass) 

plants around the perimeter and along its constructed and meandering hydrologic and fish access 

channels (trennases) (Miller 2014a; Sharp 2003). Conversely, vegetation and trenasses were allowed 

to occur naturally in Cycles 2, 3, 4, and 5. Additionally, emergent vegetation was allowed to colonize 
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prior to the breaching of containment dikes (allowing for hydrologic and fisheries access) in all 

Cycles except for Cycle 2, which remained free of vegetation until the dikes were breached, allowing 

for the requisite hydrology. At the time of initial sampling, only Cycles 1 and 3 contained vegetation 

and previously collected vegetation survey data, so Cycles 2, 4, and 5 were only included in the 

remote sensing-based assessments (descriptions below).  

 

 
 

Figure 5.1. Location map of the Sabine study area assessment units (Project Cycles, Project 
Reference, Subwatershed Reference, Reference South, and Reference North) and data collection 

sites. 
 

Assessment Units 

Reference wetland sites serve as standards against which others are evaluated, and therefore 

can be critical components of biological assessments (USEPA 2002a). Although selection of 

appropriate or representative reference sites can be difficult, the use of multiple sites and scales can 
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overcome some of the challenges of defining a reference standard for evaluating restoration 

performance (Matthews et al. 2009). The assessment units used in this study consist of varying 

scales: the Project, Project Reference (PR), and Subwatershed Reference (SR) units (Figure 5.1). The 

Project units consist of the pre-defined CWPPRA project boundaries (i.e., Sabine cycles). The PR 

unit, which is located west of the Project cycles, consists of nearby wetlands within the CWPPRA 

established reference area. The PR area, which has long been subjected to hydrologic alterations, has 

received hydrologic restoration measures as part of a separate CWPRRA project (CS-23) that was 

constructed in 2001. The SR area consists of a generalized hydrologic unit (HUC10) that was 

intersected with corresponding vegetation zones (intermediate and brackish; Sasser et al. 2014) to 

include wetlands that represent more natural system processes, conditions, and trajectories within a 

larger watershed segment (Figure 5.1). 

Field Collections 

Ground reference information from within each assessment unit was collected and used as 

primary measures of wetland function and structure. Vegetation, photographic, and global positioning 

data were observed in 0.25 m2 (0.5 m x 0.5 m) plots within the study cycles (Figure 5.1). When 

accessible, the same plots were surveyed on repeat visits in the fall of 2014, summer 2015, and fall 

2015. A Trimble GeoXH Differential Global Positioning System (DGPS) was used to determine 

coordinates of existing or proposed survey locations. To assist with site identification and to 

minimize disturbance, all plots not previously marked were done so at first arrival.  

Vegetation Surveys 

This study utilized existing (i.e., CWPPRA and Coastwide Reference Monitoring System 

[CRMS]) and newly collected vegetation data. The CWPPRA monitoring program established 

standardized methods for monitoring variables that are useful in determining the performance of 

wetland restoration projects. The vegetation monitoring component of CWPPRA collects species 
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composition, relative abundance, and aboveground biomass data (Steyer and Stewart 1992). 

However, vegetation data are typically collected more frequently in a project’s infancy (yearly), and 

less frequently (every 3-5 years) as a project nears the end of its anticipated lifespan (CWPPRA 

projects are typically designed and constructed for 20-year lifespans). Similarly, CRMS is a network 

of 392 monitoring sites in coastal Louisiana that is used to collect, process, and analyze physical, 

chemical, biological, and geospatial data to characterize coastal wetland landscapes inside and 

outside of CWPPRA projects (Cretini et al. 2011). Within the CRMS program, emergent vegetation 

are surveyed annually during the period of peak biomass (Folse et al. 2014). All existing vegetation 

data from CWPPRA and CRMS stations were acquired for the Project, PR, and SR sites (Figure 5.1). 

For new data collections, vegetation species composition and percent cover were collected from 

within 0.25 m2 quadrats at each Project sample site during periods of peak biomass in 2014 and 2015. 

Vegetation-specific sampling consisted of species identification and percent cover. Within 

each plot the vegetation cover of each species was visually estimated using the Braun-Blanquet 

(1932) scale. Since the percent cover is estimated for each strata, the total vegetation cover (sum of 

all layers) can exceed 100 percent. The vegetation cover values were used to calculate the Floristic 

Quality Index (FQI) in each Project, PR, and SR area to evaluate the ecological function of the site.  

Remote Sensing 

Remote sensing provides a means for classifying landscape features to assess the distribution 

and change of those features over time. The spatial analyses performed in this study evaluated 

vegetation quality and quantity as a measure of wetland structure, function, and resilience. Landscape 

and vegetation assessments utilized existing National Wetlands Inventory (NWI) data (USGS 1980a, 

1980b, 2004), newly derived wetland-water data, satellite imagery derived Normalized Difference 

Vegetation Index (NDVI) data, and vegetation survey data. In addition to these data sets, other 

existing geospatial data were used as ancillary interpretive information. Remote sensing data and 
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techniques were used to quantify and track landscape structure, test for differences in productivity 

between restored and reference wetlands, and evaluate the resilience of restored landscapes to 

episodic disturbance events.  

Imagery Acquisition and Processing 

Remote sensing assessments were performed using moderate (Landsat) and high 

(DigitalGlobe) spatial resolution imagery. Landsat TM images, which provide moderate spatial 

(resampled to 28 m) and temporal (16 day return) resolution data, were acquired using the Google 

Earth Engine (GEE) image service. GEE utilizes radiometrically and atmospherically corrected 

imagery, and aggregation functions (i.e., use of outlier values to remove cloud cover from 

neighboring scenes) to create image composites (Strahler et al. 1999; Chander et al. 2009). The 

DigitalGlobe images provide high spatial (1.24 to 2.4 m multispectral) and temporal (1-2 day sensor 

returns) resolution data that are useful for estimating short-term landscape variation linked to 

disturbance events and/or prevailing environmental conditions (Suir et al. 2011). All DigitalGlobe 

satellite data were acquired using the Enhanced Viewer Web Hosting Service. The images were 

geometrically and atmospherically corrected and transformed to reflectance using the Fast Line-of-

Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm in ENVI 5.3 software 

(Mutanga et al. 2012). Optical inspections were performed on all scenes to identify and remove 

satellite images of poor quality. 

Wetland and Water Classification  

The quantification of landscape structure is an important precursor to understanding 

functional effects of wetland change (Tischendorf 2001). Therefore, this study utilized space-borne 

data to classify wetland and water features and evaluate their changes over time. The satellite-based 

methodology, which is a variant of the standard procedures used for CRMS land-water classifications 

(Folse et al. 2014), was performed on moderate- and high-spatial resolution imagery. This 
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classification process utilized the Normalized Difference Water Index (NDWI) and the NDVI 

(method details provided in the vegetation section below) to identify water and wetland features, 

respectively. The traditional NDWI (McFeeters 1996), which normalizes a green band against a near 

infrared (NIR) band, is described by the following equation:  

NDWI =  𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺 − NIR
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺 + NIR

.                                                 (1) 

Recoding of the NDWI and NDVI thematic files (with and without edge enhancement) were 

performed through an overlay process. Clump and eliminate functions were then performed on each 

recoded file to reduce noise (Braud and Feng 1998; Suir et al. 2011). A final overlay was performed 

in which the NDWI and NDVI images were aggregated and recoded to single files with wetland and 

water classes. 

Landscape Metrics  

Landscape ecology is based on the premise that there are strong correlations between 

landscape pattern (configuration) and ecosystem function (Gustafson 1998). Recent studies have 

shown linkages between wetland loss, disturbance events, and wetland landscape configuration (Liu 

and Cameron 2001; Suir et al. 2013; Couvillion et al. 2016). A number of landscape metrics (i.e., 

percentage of landscape, edge density, and aggregation index) were selected after careful 

consideration of previous landscape fragmentation and configuration studies. The Aggregation Index 

(AI) has evolved as a primary metric for linking structure to ecosystem function and is defined as the 

frequency with which different pairs of patch types appear side-by-side (McGarigal 2015) and 

includes like adjacencies between the same patch-type. This index was used to assess landscape 

configuration changes over time using high resolution air- and space-borne imagery. The class-level 

AI is derived as:   

𝐴𝐴𝑁𝑁 = � 𝑔𝑔𝑖𝑖,𝑖𝑖
max _𝑔𝑔𝑖𝑖,𝑖𝑖

� (100),                                         (2) 

where gi,i is the number of like adjacencies between pixels of patch type i (class), max_gi,i is the 
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maximum number of like adjacencies between pixels of patch type (class) i (He et al. 2000; 

McGarigal 2015). The FRAGSTATS landscape pattern analysis software (version 4.2) was used to 

compute landscape metrics using the high-resolution imagery-derived wetland and water data sets.  

Normalized Difference Vegetation Index  

NDVI assessments were performed using pre- and post-construction satellite imagery 

collected from Landsat and DigitalGlobe satellite sensors (i.e., GeoEYE, Quickbird, and 

WorldView). NDVI data were created using a variant of the standard equation (Rouse et al. 1974): 

NDVI =  𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 ,                                                          (3) 

which utilizes a ratio between a near-infrared (NIR) and red band to measure an ecosystem’s ability 

to capture solar energy and convert it to organic carbon or biomass (An et al. 2013). The NDVI has 

well established correlations to photosynthetic activity, aboveground biomass, and leaf area index 

(Carle 2013).   

NDVI values range from -1 to 1, where values between -1 and zero (0) are typical of non-

vegetation features (e.g., water, cloud, and impervious surfaces), and those between 0.2 and 1.0 are 

typical of green vegetation (Datt 1999; Sims and Gamon 2002). The higher the NDVI value the 

higher, generally, the biomass, productivity, and vigor of the vegetation. ESRI (2015) ArcGIS 10.5 

was used to calculate zonal statistics (i.e., mean, min, max, and standard deviation) on values of each 

NDVI raster within the Sabine assessment units. 

Floristic Quality Index 

The traditional Floristic Quality Index (FQI), developed by Swink and Wilhelm (1979), is a 

weighted metric that was developed to assess the quality of native plant communities. The FQI 

provides an estimate of habitat quality based on a measure of vulnerability, called the Coefficient of 

Conservatism (CC), together with the richness of a plant community (Gianopoulos 2014). CC values 

range from zero (not conservative) to ten (conservative and highly ecologically sensitive), and are 
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assigned to individual plant species within a local flora by a panel of experienced botanists, primarily 

based on their best professional judgment (Bourdaghs et al. 2006; Little 2013). Since the impact and 

function of plant species differ by region, CC values are specific to a State or region (Little 2013). 

Table 5.1 provides the criteria that is typically used to assign CC values to individual plant species. 

Species are also assigned to general classes based on species characteristics. These classes include 

invasive plant species (CC value of 0), disturbance species (CC = 1–3), vigorous wetland 

communities (CC = 4–6), common species (CC = 7–8), and dominant wetland species (CC = 9–10). 

 

Table 5.1. General description and criteria for assignment of Coefficient of Conservatism (CC) 
scores (based on Andreas et al. 2004; Cohen et al. 2004; Cretini et al. 2012). 

 
General characteristics of species Criteria CC 
Invasive plant species Obligate to ruderal areas 0 
Plants that are opportunistic users of 
disturbed sites 

Occurs more frequently in ruderal areas than natural areas 1 
Facultative to ruderal and natural areas 2 
Occurs less frequent in ruderal areas than natural areas 3 

Plants that occur primarily in less vigorous 
coastal wetland communities 

Occurs much more frequently in natural areas than ruderal areas 4 
Obligate to natural areas (quality of area is low) 5 
Weak affinity to high-quality natural areas 6 

Plants that are common in vigorous coastal 
wetland communities 

Moderate affinity to high-quality natural areas 7 
High affinity to high-quality natural areas 8 

Plants that are dominants in vigorous 
coastal wetland communities 

Very high affinity to high-quality natural areas 9 
Obligate to high-quality natural areas 10 

 

In 2011, a modified FQI (FQImod) was developed for coastal Louisiana (Cretini et al. 2012). 

FQImod expanded the traditional FQI by incorporating invasive species, percent cover values, and 

accounting for total percent cover and overlapping canopies. The addition of invasive species was 

motivated by research showing strong correlations between floristic index scores and invasive species 

richness, human activity, and hydrologic impairments (Ervin et al. 2006). Additionally, incorporating 

percent cover and overlapping canopies provides better site characterization and coordination with 

current monitoring protocols (Folse et al. 2014). The modified FQI uses a two-pronged approach to 

account for sample units with vegetation cover that is less than or equal to 100%, or is greater than 

100% (overlapping canopies). If the sum of species covers within a sample unit at time t is less than 
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or equal to 100, the applicable formula is as follows: 

FQImod 𝑡𝑡 = � ∑  (COVER𝑖𝑖𝑖𝑖 x CC𝑖𝑖)
100

 �  x 10,                                            (4) 

where FQImod t is the modified floristic quality index (unitless), COVERit is the percent cover (%) 

for species i at a sample unit, within a sample site, at time t, and CCi is the Coefficient of 

Conservatism for species i (Table 5.1).  

By using 100 in the denominator (instead of the actual sum of species covers), differentiation 

between wetlands of similar composition (e.g., vigorous wetlands) can be made using normalized 

biomass (estimated through cover) (Cretini et al. 2012). For consistency with other CRMS and 

CWPPRA metrics and indices, the FQI values are multiplied by 10 to scale the scores from 0 to 100 

(Cretini et al. 2011).  

If the sum of species covers within a sample unit at time t is greater than 100, the applicable 

formula is: 

FQImod 𝑡𝑡 = � ∑  (COVER𝑖𝑖𝑖𝑖 x CC𝑖𝑖)
∑  (TOTAL COVER𝑖𝑖)

 �  x 10,                                           (5) 

where TOTAL COVERt refers to the percent cumulative species cover (expressed as a percentage) 

within a sample unit (Cretini et al. 2012).  

FQI scores provide measurements of vegetation condition and maturity. Low FQI values can 

be indicative of early successional vegetation communities, highly disturbed or early post-disturbance 

evolution, or other presses or pulses that are negatively impacting wetland function. Conversely, high 

FQI values are more typical in mature, stable, and un-disturbed wetlands. 

For all established CWPPRA and CRMS stations within the Project, PR, and SR assessment 

units, the CRMS Data Download service was used to acquire station-specific FQI data from 1997 to 

2015 (CPRA 2016). These data were supplemented with vegetation surveys that were performed as 

part of this study (surveys conducted in 2014 and 2015). The FQImod was calculated for each 

vegetation station (using existing and newly surveyed data) within the Sabine Project, PR, and SR 
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areas, using the Louisiana CC list and equations (Eqs. 4 and 5). For species not on the Louisiana 

Coefficient of Conservatism list, established values from regional lists or neighboring states were 

used in conjunction with best judgement (Herman et al. 2006; Mortellaro et al. 2012; Gianopulos 

2014). 

Resilience 

The resilience of ecosystems, defined as the amount of disturbance a system can absorb and 

still return to a pre-disturbance state or domain (Leps et al. 1982; Holling 1996), is a critical factor 

underlying the sustained production of natural resources and ecosystem services, especially in highly 

complex and dynamic systems (Gunderson and Holling 2002). Many natural and anthropogenic-

induced disturbances, such as storm energies, inundation, and salinity, can be catalysts for long-term 

impacts on, and degradation of, wetland ecosystems (Steyer et al. 2007). Hurricanes and other 

extreme extratropical storms have been shown to contribute to extensive erosion, breaching, scouring, 

and compression of coastal wetlands (Meeder 1987; Morton and Sallenger 2003; Suir et al. 2011). 

Similarly, inundation (especially with increased depth and duration) and salinity fluxes are major 

stressors on wetland plants that can strongly influence establishment, distribution, competition, and 

switching of vegetation and habitat (Steyer et al. 2008a).  

Ecosystem resilience was evaluated and compared within restored and natural wetlands by 

quantifying wetland structure (i.e., wetland area and aggregation index) and function (i.e., 

productivity, edge density, and floristic quality index) that bracket disturbance events. Tracking these 

metrics over time provide assessments of wetland resilience, and comparisons of restored wetlands to 

naturally occurring or hydrologically altered wetlands.  

Statistical analyses 

Regression and correlation methods were used to assess the relationships among landscape 

metrics, vegetation characteristics, and wetland productivity. The Statistical Analysis System 
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software version 9.2 PROC GLM procedure was used to perform a one-way analysis of variance 

(ANOVA) and a means separation test (Tukey’s, α = 0.05) to evaluate significance of differences 

between attributes for each assessment unit.  

RESULTS AND DISCUSSION 

Wetland and Water Trends 

Figure 5.2 summarizes the Landsat-derived wetland area and change trends for the Project 

cycles, PR, and SR units from 1956 to 2016. In 1956, the Project, PR, and SR units consisted of more 

than 90% land, while in 2000 (prior to wetland and hydrologic restoration activities in the Sabine 

area) those units were reduced to approximately 5%, 67%, and 52% wetlands, respectively. Between 

1956 and 1978 the Project cycle areas (pre-restoration) were largely impacted by hurricanes and 

canal building, which resulted in significant conversion from wetlands to open water (Miller 2014a). 

Wetland change in the PR and SR units were largely driven by saltwater intrusion, increased water 

fluctuations, and tidal scouring due to the channelization of the Calcasieu Ship Channel (Miller 

2003). Since 2000, the Project cycles and other restoration measures have been constructed in the 

Sabine study area. Wetland restoration (CS-28 constructed in 2002, 2007, 2010, 2014, and 2015), 

along with hydrologic restoration (CS-23 construction in 2001) and erosion protection measures (CS-

18 constructed in 1995) were devised to provide direct and indirect structural and functional benefits 

within the Sabine Refuge and surrounding wetlands. Approximately four years after construction, 

Cycles 1 and 3 regained and maintained percentages of wetlands that were greater than 90% (Figure 

5.2). The Cycle 2 overflow area has experienced similar trends (89% wetlands), however, due to 

hydrologic restrictions to the Cycle 2 unit (containment dike gaps were not cut for hydrologic flow 

until 2014), the Cycle 2 unit has only achieved 76% wetlands (Figure 5.2). Although only recently 

constructed, the early stages of platform consolidation and vegetation within Cycles 4 and 5 mimic 

those that are observed in the early stages of Cycles 1, 2, and 3.  
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Figure 5.2. Wetland change data (derived from moderate resolution imagery) and trends 
(3rd order polynomial) within the Sabine assessment units from 1956 to 2016. Vertical 

dashed lines represent end of construction of each restoration cycle. 
 

Figure 5.2 shows rapid increases in wetland area within the Project areas (purple, green, blue, 

and red trend lines), as a result of wetland restoration measures, while the hydrologic alterations and 

erosion control measures in the PR and SR units resulted in slight to moderate increases in wetland 

area (black and gray dotted trend lines). Figure 5.2 also illustrates how these restoration measures are 

performing with respect to the 70% wetland target (orange dashed line) that is common for many 

wetland restoration projects in coastal Louisiana (USACE 2004). The mature Sabine cycles (1, 2, and 

3) consist of more than 70% wetlands, while the younger cycles (4 and 5) have recently undergone 

vegetative colonization, but are expected to follow similar trajectories and eclipse the 70% target 

within four or five years of construction. In recent decades the percentages of wetland area within the 
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PR and SR units have primarily resided below the 70% target, and have experienced decreasing 

trends since Hurricanes Rita (Category 3 storm, September 24, 2005) and Ike (2008). 

Figure 5.3 provides a more near-term assessment (1998 to 2016) of the wetland area and 

change trends that were generated for the Project cycles, PR, and SR units using high-resolution air- 

and space-borne imagery. However, due to incomplete coverage (i.e., narrow sensor swath and 

clouds) of the PR and SR units by the higher restoration imagery, representative areas from each 

restoration unit were selected based on feature type (i.e., wetlands) and maximum coverage. These 

sub-units are referred to as the Reference South for the PR unit and Reference North for the SR unit 

(Figure 5.1). 

In 1998, the Project cycles consisted of wetland percentages that ranged from a low of 1.2% 

to a high of 6.7% for Cycle 5 and Cycle 3, respectively. In 1998, the percentage of wetland for the 

Reference South and Reference North sub-units were approximately 69% and 39%, respectively 

(Figure 5.3). Similar to the Landsat-derived data, the high-resolution data show rapidly increasing 

wetland area within each of the constructed Project cycles, with each requiring approximately three to 

four years to reach the 70% wetland target. The Restoration South and North sub-units experienced 

more gradual increases in wetland percentages between 1998 and 2016, with the PR and SR sub-units 

increasing in wetland area by approximately 10% and 30%, respectively. These increases are largely 

due to restored hydrology in the area, but since they are reference sub-areas in closest proximity to 

the Project units, they potentially benefit from a reduction in fetch (erosional forces) as related to the 

constructed cycles. 

Landscape Metrics 

Landscape metrics were derived from high spatial resolution air- and space-borne imagery 

and used to measure and compare wetland structure. The utility of these measures are generally found 

in the ability to track their changes through space and time, and linking those structural changes to 
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ecosystem condition and function. The Aggregation Index (AI) is a landscape metric of interest 

because it provides measures of landscape condition that positively correlate to wetland integrity and 

stability (Suir et al. 2013; Couvillion et al. 2016). Figure 5.4 illustrates AI values and trend lines for 

each assessment unit. These class-level values were computed using the “wetland” class from 13 

classified images from 1998 to 2016.  The mean AI values across the period of analysis were 98.1 ± 

2.0, 92.0 ± 4.6, 93.9 ± 4.3, 97.3 ± 2.9, 91.5 ± 6.3, 84.8 ± 6.1, 97.7 ± 1.0, and 98.1 ± 0.6, for Cycle 1, 

Cycle 2, Cycle 2 overflow, Cycle 3, Cycle 4, Cycle 5, Reference South, and Reference North, 

respectively. A one-way ANOVA with a post-hoc Tukey HSD Test shows that Cycle 5 is 

significantly different (p<0.05) from all other units; Cycle 4 is significantly different (p<0.05) from 

Cycle 1, Cycle 3, Reference South, and Reference North units; Cycle 2 is significantly different 

(p<0.05) from Cycle 3, Reference South, and Reference North units; and Cycle 1 is significantly 

different (p<0.05) from Cycle 2. 

 

 
 

Figure 5.3. Wetland change data (derived from high resolution imagery) and trends (3rd 
order polynomial) within the Sabine assessment units from 1998 to 2016. Vertical dashed 

lines represent end of construction of each restoration cycle. 
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The AI values for the Reference South and North units were high in 1998, and remained 

relatively constant throughout the period of analysis. These values and trends are indicative of 

relatively stable landscapes with slight increasing near-term spatial integrity. The starting AI values 

and overall trends varied considerably for each of the Project cycles. This is a result of the class-level 

computation of the AI and the fact that some cycle units contained wetland features prior to 

restoration and some did not. The more mature restoration units, Cycles 1, 3, and 2, exhibited more 

anticipated values and trends. These included moderate starting AI values and significant increasing 

trends, post-construction. The increasing AI values in Cycles 1, 3, and 2 are indicative of vegetative 

establishment on newly constructed wetland platforms. Figure 5.4 also shows that it took 

approximately four to six years post-construction for the AI values in Cycles 1, 3, and 2 to exceed 

those of the reference units. 

 

 
 

Figure 5.4. Aggregation Index data (derived from high resolution imagery) and trends (3rd 
order polynomial) within the Sabine assessment units from 1998 to 2016. Vertical dashed 

lines represent end of construction of each restoration cycle. 
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Overall, the AI trends corresponded to the wetland change trends that were observed in each 

assessment unit, which in turn corresponded to restoration measures (i.e., restored hydrology and 

wetland restoration) in the study area. With increasing wetland area came higher levels of 

aggregation or spatial integrity. This was observed in the reference units and the more mature 

restoration cycles, but due to site immaturity (insufficient time for material consolidation and 

vegetation establishment) similar trends were not discernable in recently constructed Cycles 4 and 5. 

Normalized Difference Vegetation Index 

As with the wetland area evaluations, the NDVI assessments were performed using moderate- 

and high-resolution imagery. Figure 5.5 illustrates the mean values (per image) and trajectory of 

Landsat-derived NDVI data within the Project cycles, PR, and SR assessment unit. These represent 

all qualifying data, regardless of season, across two distinct periods, the pre- (1985 to 2000) and post-

restoration (2000 to 2016) periods. The mean NDVI values ranged from near zero for the Cycle 2 

overflow area in October of 2008 to 0.57 for the SR unit in September of 2015. The mean NDVI 

values by assessment unit were 0.26 ± 0.1, 0.19 ± 0.07, 0.18 ± 0.09, 0.22 ± 0.09, 0.1 ± 0.05, 0.13 ± 

0.06, 0.35 ± 0.08, and 0.35 ± 0.09, for the Cycle 1, Cycle 2, Cycle 2 overflow, Cycle 3, Cycle 4, 

Cycle 5, PR, and SR assessment units, respectively. The mean NDVI values for each assessment unit 

were significantly different (p<0.05), except for Cycle 2, which was not significantly different than 

Cycle 2 overflow; and the PR unit, which was not significantly different than the SR unit. 

The lower mean NDVI values in the Project units, specifically during the pre-restoration 

period, are indicative of low productivity wetlands that were highly degraded by disturbance events 

(i.e., hurricanes) and alterations to local hydrology. The pre-restoration period values for all Project 

cycles were lower than those previously reported for brackish marsh (0.45) in the Calcasieu/Sabine 

watershed basin (Suir et al. unpublished). The earlier constructed cycles, 1 and 3, experienced 

marked increases in NDVI values during the post-restoration period. These cycles experienced 
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increases in mean NDVI values that ranged from lows near 0.2 in 1985, to highs near 0.45 by the end 

of the post-restoration period of analysis. It took approximately ten years for Cycles 1 and 3 to reach 

productivity (NDVI) equilibrium with the PR and SR units. The vegetation productivity trends within 

the Cycle 2 and Cycle 2 overflow units are similar to those that were observed in the early years of 

Cycles 1 and 3. On the current trajectory, it is expected that the Cycle 2 units will also reach 

productivity equilibrium with the PR and SR units at approximately ten years after construction. 

Also, since Cycles 4 and 5 were constructed similarly to Cycle 3 (natural establishment of trenasses 

and vegetation), they are expected to evolve and function similarly to Cycle 3. 

 

 
 

Figure 5.5. Normalized difference vegetation index data (derived from moderate resolution 
imagery) and trends (3rd order polynomial) within the Sabine assessment units from 1985 to 

2016. Vertical dashed lines represent end of construction of each restoration cycle. 
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Increasing mean NDVI values were also observed in the PR and SR units. These increases are 

likely due to combined impacts from restored hydrology and erosion control provided by the Project 

cycles. Figure 5.5 also illustrates reductions in NDVI that were induced by Hurricanes Rita (2005) 

and Ike (2008). These downward trends in NDVI were succeeded by vegetative recovery, which 

typically occurs by the end of the next full growing season after a disturbance event (Carle et al. 

2015; Steyer et al. 2013). In all, the PR, SR, and more mature Project cycles have recent vegetative 

productivity that correspond to the long-term Calcasieu basin mean NDVI (0.45). 

Though the existing higher spatial resolution satellite imagery (from DigitalGlobe) lacks the 

temporal resolution of Landsat imagery, they do provide grain size that are more suitable for 

discerning smaller landscape features and reducing edge effect in image classification. Figure 5.6 

illustrates the mean values (per image) and trajectory of high resolution imagery-derived NDVI data 

within the Project cycles, Reference North, and Reference South assessment unit from 2004 to 2016. 

The mean NDVI values ranged from those below zero, for the cycle units prior to their restoration 

(most cycle areas consisted primarily of open water with small patches of degraded wetlands), to 0.78 

within the Cycle 1 unit in 2009. Similar to the Landsat-derived NDVI data, the higher resolution data 

experienced rapid increases in NDVI values post-restoration. The NDVI maxima for the older Cycles 

(1, 3, and 2) were reached at approximately five years post-construction, at which point each Cycle 

experienced periods of nominal reductions, followed by more stable productivity. These trends were 

similar to those observed in the Reference North and Reference South units, which experienced 

NDVI maxima during the Hurricane Rita recovery period and slight reductions and stabilization in 

vegetation productivity from 2009 to 2016.  

Across the period of record, the mean NDVI values were not significantly different between 

assessment units except for Cycles 4 and 5, which were significantly different (p<0.05) from all other 

units; and Cycle 1, which was significantly different from Cycle 2. These differences are primarily 
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due to the age of restoration. The productivity estimates from the higher resolution imagery show that 

the Project and Reference units had NDVI values that were slightly below the longer term trends 

within the Calcasieu watershed basin. These assessments show that with maturity, and when sediment 

deposition increases the marsh platform elevation to a range that promotes vegetation growth, the 

restored wetlands in this area can achieve, and potentially outperform, vegetative productivity of 

natural wetlands (Figure 5.6). 

 

 
 

Figure 5.6. Normalized difference vegetation index data (derived from high resolution 
imagery) and trends (3rd order polynomial) within the Sabine assessment units from 2004 to 

2016. Vertical dashed lines represent end of construction of each restoration cycle. 
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Vegetation Survey 

Historically, vegetation survey data have been used to identify the presence of, and track 

changes in, vegetative species and communities over time. Miller (2014a) describes a 1968 to 1988 

shift in the Sabine project area vegetation community from intermediate and fresh dominated marsh 

species to more brackish species including Spartina patens (saltmeadow cordgrass), Schoenoplectus 

americanus (chairmaker’s bulrush), and Schoenoplectus robustus (saltmarsh bulrush).  

Figure 5.7 shows the average vegetation percent cover by species for all survey stations, 

separated by assessment unit and year. Figure 5.7 also groups and color codes all species based on 

Coefficient of Conservatism values (Table 5.1). There were 85 different plant species observed across 

all Sabine units and stations from 1997 to 2015. Species with cover values <3% in a given year were 

categorized as “other.” The first vegetation survey (2004) within the Project assessment unit (upper 

panel in Figure 5.7), shows that the edge planting as part Cycle 1 (2002) stimulated vegetation 

expansion, resulting in a Spartina alterniflora dominated landscape (57.5%) with a total cover of 

59.5%. Hurricanes Lili (Category 1 storm, October 3, 2002) and Rita (2005) significantly impacted 

vegetation communities along the central and western portions of coastal Louisiana. Hurricane Rita 

reduced the percent cover within Cycle 1 to 1.8% in 2005, but the unit recovered to 90% and 81.5% 

cover by 2006 and 2007, respectively. Spartina alterniflora remained the dominant species during 

this recovery, accounting for 90% and 76.6% of the total cover, respectively. By 2008 the Spartina 

alterniflora monoculture within the Project sites began to shift to a vegetative assemblage of common 

(CC = 7-8) and dominant (CC = 9-10) species. This was due in part to the construction (2007) and 

natural colonization of Cycle 3. From 2011 to 2015 the typical vegetation profile for Project sites had 

total cover values between 75% and 87%, and consisted primarily of Spartina alterniflora, Distichlis 

spicata [Coastal Salt Grass], Schoenoplectus robustus, Borrichia frutescens (bushy seaside tansy), Iva 

frutescens (Jesuit's bark), and nominal percentages of “other” species.  
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The first vegetation surveys in the Sabine PR assessment unit occurred in 1999 and exhibited 

a total of 88.6% vegetation cover (Figure 5.7). The PR unit consisted primarily of Spartina patens 

(14.9%), Distichlis spicata (8.8%), Schoenoplectus americanus (7.8%), Schoenoplectus robustus 

(7.4%), and the “other” class (22 species), which accounted for 26.1% of the total cover. By 2001 and 

2002 the PR sites were dominated by Schoenoplectus americanus and Distichlis spicata, with some 

lower percentages of Spartina patens and Paspalum vaginatum (seashore paspalum). By the 2005 

surveys, the average total cover per site decreased to 44.4% and consisted of only two species, 

Spartina patens and Paspalum vaginatum. This change in cover was directly related to hurricane 

impacts. From 2006 to 2015, the PR sites exhibited a slow recovery and reestablishment of 

vegetation, with higher percentages of the “other” class, followed closely by increasing percentages 

of disturbance species (CC = 1–3) and more recently by vigorous wetland species (CC = 4–6). 

In 1997, the SR stations consisted primarily of Schoenoplectus californicus (California 

bulrush, 19.1%), Spartina patens (15.4%), and Paspalum vaginatum (7.7%) (Figure 5.7). The SR 

stations in 1997 also consisted of 31 species that were categorized as “other”, accounting for 20.9% 

of the total cover. The dominant species persisted throughout the period of study, but they were 

occasionally equaled or surpassed in cover by Iva frutescens (max 14%), Distichlis spicata (max 

11.9%), and Leptochloa fusca (Malabar sprangletop; max 22.1%). 

The Sabine Project cycles experienced rapid vegetation establishment followed by a transition 

to higher diversity and colonization by common and dominant species. The PR and SR units also 

consisted largely by common and dominant species prior to Hurricane Rita, however, the PR unit 

transitioned to dominant with vigorous wetland species while the SR unit transitioned to assemblages 

with higher numbers of disturbance species and higher percentages of cover. 
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Figure 5.7. Percent cover and Coefficient of Conservatism values for species within the 
Sabine Project, Project Reference, and Subwatershed Reference assessment units (CRMS 

and CWPPRA). 
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05 - Eleocharis montana 05 - Justicia 05 - Lythrum lineare 05 - Polygonum punctatum
05 - Sagittaria latifolia 05 - Sagittaria platyphylla 05 - Symphyotrichum tenuifolium 05 - Zizaniopsis miliacea
06 - Agalinis purpurea 06 - Eleocharis flavescens 06 - Fimbristylis castanea 06 - Justicia americana
06 - Lycium carolinianum 06 - Morella cerifera 06 - Nelumbo lutea 06 - Phragmites australis
06 - Sabatia stellaris 06 - Sacciolepis striata 06 - Sagittaria lancifolia 06 - Scirpus americanus
07 - Borrichia frutescens 07 - Eleocharis 07 - Eleocharis cellulosa 07 - Kosteletzkya virginica
07 - Leersia hexandra 07 - Leersia oryzoides 07 - Paspalum vaginatum 07 - Salicornia depressa
07 - Schoenoplectus 07 - Schoenoplectus californicus 07 - Schoenoplectus maritimus 07 - Schoenoplectus pungens
07 - Schoenoplectus robustus 07 - Schoenoplectus tabernaemontani 07 - Thelypteris palustris 08 - Cladium mariscus
08 - Hypoxis sessilis 08 - Ipomoea sagittata 08 - Schoenoplectus americanus 08 - Spartina cynosuroides
09 - Distichlis spicata 09 - Juncus roemerianus 09 - Spartina patens 10 - Panicum hemitomon
10 - Spartina alterniflora 10 - Taxodium distichum Other
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Floristic Quality 

FQImod scores were calculated for each survey site within each Sabine assessment unit from 

1997 to 2015 (Figure 5.8). The Project sites (red dots), consisting of Cycle 1 and Cycle 3, were first 

surveyed in 2004 (post construction of Cycle 1) and last surveyed in 2015. The PR sites (green 

squares) and SR sites (yellow triangles) were both surveyed from 1999 to 2015. Trend lines (3rd 

order polynomial) within Figure 5.8 show the trajectories of FQImod values across each assessment 

unit’s period of analysis. The Subwatershed Reference unit data and trend line show a landscape with 

rapidly declining floristic quality during the Hurricane Rita and Ike disturbance period (2005 to 2009) 

and equally rapid increase in FQI during the recovery period (2010 to 2015). This is indicative of a 

susceptible system and corroborates previous studies that have shown significant wetland area and 

function loss due to hurricanes, high salinity events, increased water fluctuations, and tidal scouring 

(Barras 2005; LCWCRTF 2002a; Miller 2014b). The Project Reference unit data and trend line show 

a landscape that was on a declining trajectory but stabilized in 2007 and subsequently experienced an 

increase in FQImod score. The long-term degeneration that has occurred in this area is evident from 

1999 to 2005 (Figure 5.8), however a CWPPRA project aimed at restoring hydrologic connectivity 

was completed in the PR unit in 2001, and its impact can be observed in the increasing FQImod scores 

from 2007 to 2015. The Project unit data and trend line show a landscape with early increasing 

floristic quality, however the FQImod scores have stabilized since 2012, which may be attributable to 

upper functional limits for this system.  

The Project unit FQImod data and trends are indicative of the rapid colonization and vegetative 

growth that are common in newly constructed wetlands. The Project unit average FQImod score from 

2010 to 2015 was approximately 80. This coincides with the ideal range for Chenier Plain brackish 

marsh that was reported by Cretini et al. (2012) (Table 5.2). Since construction, the Project units have 
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mostly maintained higher floristic quality than the reference units, indicating that they were more 

resistant to large disturbance events. 

 

 
 

Figure 5.8. Floristic Quality Index (FQImod) scores for all survey stations within the Sabine 
assessment units by year. Vertical dashed lines represent tropical storm (TS) activity (wind 

speed m s-1) and the vertical solid line represents a salinity spike. 
 

Table 5.2. Preliminarily established ideal range for vegetation indices in Louisiana’s principal 
geological settings. Courtesy of Cretini et al. (2011). 

 

Geological setting Habitat type FQImod 
Inactive deltaic plain Fresh marsh  >80 
 Intermediate marsh  >80 
 Brackish marsh  >80 
 Saline marsh  >80 
Active deltaic plain Fresh marsh  >70 
 Intermediate marsh  >70 
Chenier plain Fresh marsh  >80 
 Intermediate marsh  >80 
 Brackish marsh  >80 
 Saline marsh  >80 
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Resilience 

To further test the resilience of restored marsh to disturbance events, comparisons of key 

ecosystem metrics were made between Cycle 1 and the Reference North and South assessment units. 

Three principal disturbance events occurred within the Sabine study site during the post-construction 

period (2002 to 2016). These disturbances consisted of Hurricane Rita (landfall on 24 September 

2005), with sustained winds of 47 meters per second (m s-1) and a storm surge height of 

approximately 1.3 m; Hurricane Ike (landfall on 13 September 2008), with sustained winds of 42 m 

s-1, storm surge height of approximately 3 m, and major flooding and inundation (Figure 5.9); and a 

high salinity event in 2009, with maintained salinity above 30 from 4 July to 18 August (38.8 salinity 

maxima on 5 August 2009). The elevated salinity levels were likely due, in part, to a period of 

moderate to severe drought that occurred between June and July, 2009 (NOAA 2009), which caused 

reduced inflow of freshwater into adjacent wetlands and estuary. By comparison, the average salinity 

across the post-construction period was 17.7.  

 

 
 

Figure 5.9. Hourly wind speed (meters per second), water depth (meters), and period of 
elevated salinity within the Sabine study area.  
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The post-construction period was further subset into a disturbance period (2002 to 2009) and 

a recovery period (2010 to 2016). Metrics of wetland condition (land change, edge density, 

aggregation index, NDVI, and FQI) during these periods provide measures of direct and indirect 

impacts from the disturbance events, and the recovery or resilience of Sabine wetlands (reference and 

restored). Table 5.3 provides change rates (slope) for each measure of resilience by assessment unit 

across the disturbance and recovery periods of analysis. Comparing Figure 5.3 and Table 5.3 shows 

the wetland gains that were achieved in Cycle 1 during the restoration period were maintained during 

the disturbance period, increasing in wetland area at a rate of 3.28 percent per year. The wetland 

change trends in the Reference South and Reference North units during the disturbance period were 

significantly lower than Cycle 1. The Reference South and Reference North rates of change were 

0.92 and -2.94 percent per year, respectively. The reduced gain rate in the Reference South unit, and 

the rate of loss in the Reference North unit, are indicative of wetlands that experienced direct 

disturbance impacts. This is further evidenced in the wetland and water classified images within the 

disturbance period, which show storm-formed features (i.e., plucked marsh and amorphous ponds) in 

the Reference South and North units. The wetland change rates during the recovery period were 0.52, 

1.12, and 2.19 for the Project, Reference South, and Reference North units, respectively. The Cycle 1 

percentage of wetland and wetland change rate is indicative of a landscape that was approaching the 

upper wetland gain limits (greater than 90% wetland during the recovery period) and exhibited little 

to no impacts from the disturbance events. The Reference South unit wetland change rate is 

indicative of a landscape with minimal recovery after equally minimal disturbance impacts. The 

Reference North unit wetland change rate is indicative of a landscape with moderate recovery after 

equally moderate disturbance impacts. It is postulated that these differences are largely due to the 

erosion protection that is provided by the containment dikes around the Project cycles. 
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Table 5.3. Change rates (slope) of percent wetland, edge density, aggregation index, normalized 
difference vegetation index, and floristic quality index for the project, reference south, and 

reference north units across the disturbance and recovery periods of analysis. 
 

      Project   Reference South   Reference North 

Period Metric  
Slope                    

(per year) SE  
Slope                    

(per year) SE  
Slope                    

(per year) SE 
Disturbance Percent Wetland   3.28 1.34   0.92 4.19   -2.94 4.14 
Recovery Percent Wetland   0.52 0.24   1.12 1.27   2.19 0.61 
Disturbance Edge Density  -77.94 16.91  31.76 20.74  6.65 1.21 
Recovery Edge Density  -7.72 5.30  -9.76 25.94  9.41 13.61 
Disturbance Aggregation Index   0.96 0.51   -0.21 0.05   -0.13 0.11 
Recovery Aggregation Index   0.07 0.04   0.09 0.06   -0.01 0.12 
Disturbance NDVI  0.07 0.03  0.06 0.01  0.06 0.01 
Recovery NDVI  -0.02 0.07  -0.02 0.42  -0.02 0.20 
Disturbance FQI   0.75 0.31   -0.29 0.10   -0.73 0.45 
Recovery FQI   0.03 0.07   0.08 0.09   0.33 0.22 

 

The landscape pattern metrics and trends selected for use in this assessment (edge density and 

aggregation index) provide measures of wetland structure and spatial integrity. In wetland landscapes 

that are predominantly land, as with all post-construction period Sabine assessment units, decreasing 

rates of edge density and increasing rates of aggregation are indicative of water features that are 

converting to emergent marsh or where vegetation is establishing on newly construction wetlands 

platforms. The opposite is true of landscapes with increasing edge density and decreasing 

aggregation. For the disturbance period, Cycle 1 experienced a high negative rate of change in edge 

density (-77.94) and a positive rate of change in aggregation index (0.96) (Table 5.3). The rates of 

change were more moderate during the recovery period, -7.72 and 0.07, for edge density and 

aggregation index, respectively. These trends are indicative of a wetland landscape that was 

establishing, maturing, and resilient to episodic disturbance events. For both reference units, 

moderate rates of change were positive for edge density, and negative for aggregation index, during 

the disturbance period. These combinations are indicative of wetland landscapes with increasing edge 

and decreasing aggregation due to direct hurricane impacts (i.e., scouring and edge erosion). 
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Recovery in the reference units were dissimilar, with moderate recovery in both structural metrics for 

Reference South, and continued degradation in the Reference North unit. 

The NDV and FQ indices provide measures of vegetative productivity and quality, both 

serving as indicators of wetland function and condition. Highly functioning wetlands typically have 

high NDVI and FQI values, while disturbed or low functioning wetlands have lower NDVI and FQI 

scores. The NDVI rates of change were moderately positive for all assessment units during the 

disturbance period, and nominally negative for all units during the recovery period (Table 5.3). 

Though Cycle 1 NDVI rates were higher than the reference units, they were only significantly 

different from the Reference North rates (p<0.05). These results indicate that wetland productivity in 

the Sabine assessment units might be more sensitive to salinity disturbances and less sensitive to 

storm energies. Though the FQI rates of change in the Cycle 1 unit were positive during the 

disturbance (0.75) and recovery (0.03) periods, the rate was significantly higher in the disturbance 

period. This corresponds to a landscape that was quickly vegetating during the disturbance period, 

and experienced an increasing FQI rate of change due to increasing vegetative establishment and 

cover. The lower FQI rate of change in Cycle 1 during the recovery period is likely due to functional 

limits (FQI above 80 during recovery period) and possibly some salinity impacts. Both reference 

units experienced decreasing rates of FQI during the disturbance period and increasing rates of FQI 

during the recovery period. These are more typical trends in floristic quality rates, where vegetative 

quality and quantity are quickly reduced during and soon after disturbance events, followed by 

recovery over subsequent growing seasons. 

The measures of disturbance and recovery used in this study show that the restored wetlands 

largely experienced insignificant impacts from disturbance events, while the reference wetlands were 

significantly (for most measures) impacted. These differences are potentially related to the protection 

(i.e., containment dikes) and function (i.e., altered hydrology) that the large volume of placed 
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sediments and subsequent vegetation provide by limiting storm energies and reducing the duration of 

increased inundation and salinity. Ultimately, the restored wetlands were more resistant to 

disturbance events and more resilient across all assessment periods. 

CONCLUSIONS 

Vegetation provides one of the best indicators for assessing the condition and performance of 

wetlands (Fennessy et al. 2002). However, using standard approaches with vegetation classification 

and cover data to assess wetland condition and restoration performance can be demanding, especially 

with long periods of analyses and large quantities of data. Though these standard measures provide 

assessments of vegetation species presence and abundance (percentage of cover), using these 

measures to compare the condition of one wetland area to another would benefit from complementary 

methods more aligned to assess structure and productivity across larger areas.  

This study used vegetation survey data, in addition to wetland and water classified data, 

landscape metrics, NDVI, and FQI data to evaluate change and trends in restored wetland condition, 

function, and resilience, and compared those to reference wetlands. Across all measures, the restored 

brackish wetlands reached structural and functional equivalency to reference wetlands at 

approximately three to five years after construction. With adequate maturity, the restored wetlands 

outperformed the reference wetlands in the metrics analyzed in this study, having higher percentage 

of wetland, wetland aggregation (i.e., spatial integrity), aboveground vegetation productivity, and 

floristic quality. The restored brackish wetlands also demonstrated higher levels of stability, 

providing more resistance to disturbance events (i.e., hurricanes, inundation, and salinity events), and 

experiencing reduced levels of flux (i.e., transitional phases of invasive and disturbance species) 

during the recovery period. 

The results of this study show that the combination of remotely collected and in situ data, in 

addition to derived metrics and indices, provided adequate measures of wetland performance 
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(structure and function) and were able to reflect wetland resilience to and recovery from disturbance 

events. Ultimately, these data and methods provide helpful knowledge elements that allow for 

inventorying and monitoring of wetland resources, forecasting of resource condition and stability, 

and adaptive management strategies. 
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CHAPTER 6 – SUMMARY 
 
 

Louisiana consists of approximately 40% of all the coastal wetlands located in the 

conterminous United States, but has accounted for approximately 90% of all coastal marsh loss since 

the 1930s. These coastal Louisiana losses—which operate on varied time scales, and as a result of 

both natural and man-induced events—jeopardize the nation's most productive estuaries, largest 

coastal channel water-borne commerce, and most critical oil and gas infrastructure. To combat these 

losses many restoration projects have been constructed or planned throughout coastal Louisiana. 

Typical goals of wetland restoration efforts are to conserve, create, or enhance wetland form, and to 

achieve wetland function that approaches natural conditions. Failure to adequately maintain 

elevation, hydrology, sedimentation, or vegetation in restored wetlands can ultimately lead to 

degrading conditions. Therefore, accurate and efficient monitoring of restored wetlands is necessary 

to evaluate functional components and capacities, to assess the performance over time, and resistance 

to disturbance events (natural and anthropogenic). However, monitoring and assessing the benefits 

and performance of restored wetlands are often hindered by budget and resource constraints. As a 

result, knowledge gaps persist about the short- and long-term ecological evolution of restored and 

nourished sites, potentially resulting in inefficient management of sediment resources. Therefore, 

these studies used remotely sensed data and methods to evaluate ecosystem and project targets, 

quantify environmental benefits; assess the geomorphic factors and ecological processes that govern 

wetland creation and nourishment applications; and evaluate project performance and resilience. 

These measures are helpful for maximizing the application and adaptive management of sediment for 

wetland creation and nourishment.  

The overarching goal of this study was to gain an improved understanding of the effects of 

sediment introduction into wetland systems and the factors influencing the establishment, function, 

evolution, and resilience of restored wetland vegetation communities. This was achieved by 
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considering the coast- and basin-scale impacts of river connectivity and sediment availability on 

wetland productivity and stability—and the use of an exceptionally large data set to derive and 

evaluate soil characteristics and processes (i.e., carbon accumulation) as functions of wetland 

restoration. To evaluate more specific uses of sediment for ecosystem restoration, and their impacts 

on wetland form, function, and resilience, two project-scale studies were performed at the far-east 

(Chandeleur Islands) and west (Sabine Refuge) reaches of coastal Louisiana. These smaller scale-

studies evaluated the effects of berm sediment redistribution on island elevation, habitat, productivity, 

and floristic quality; and the ability of constructed wetlands to reach structural and functional 

equivalency to reference wetlands. 

The specific objectives of these studies were to: (1) assess correlations between wetland 

productivity and riverine influence; (2) evaluate trends in wetland stability and correlations to 

productivity and river connectivity; (3) compile a comprehensive set of soils data from restoration 

and reference wetlands in coastal Louisiana; (4) map the spatial distribution of relevant wetland soils 

characteristics; (5) compute carbon sequestration rates for restored and natural wetland sites; (6) 

compare soil function across type and age of restoration measure; (7) evaluate the redistribution of 

berm sediment within the northern Chandeleur Island system; (8) assess berm sediment impacts by 

evaluating the quantity and quality of existing and new emergent vegetation as a function of 

redistributed sediment; (9) evaluate and compare structural changes of restored wetlands to naturally 

occurring reference wetlands; (10) quantify the quality and functional changes of restored wetland 

and compare to reference wetlands; (11) assess the resilience and recovery of restored wetlands to 

short-term episodic events (i.e., tropical storms and salinity spikes); and (12) demonstrate the overall 

efficiency and effectiveness of remote sensing methods for wetland monitoring and consider the 

implications of these data for future restoration and adaptive management activities. 
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Due to their rapid growth rates and direct response to environmental stressors and 

disturbances plants are excellent indicators for assessing the condition and performance of wetlands. 

However, solely using standard field-collected data to assess wetland condition and restoration 

performance can fail to account for key structural components, and can be challenging, especially in 

studies with large spatial and temporal requirements. Fortunately, the ability to understand the spatial 

and temporal dynamics of wetland landscapes is enhanced by recent advancements in remote sensing 

systems and analytics.  

Remote sensing and landscape analyses provided enhanced techniques for evaluating 

landscape features, and specifically wetland structure and vegetation productivity. Satellite imagery 

were used to perform multi-temporal and -spatial scale assessments to quantify wetland productivity 

and stability metrics, and evaluate changes and correlations to reference wetlands and select 

ecosystem presses and pulses. Specifically, remote sensing, field data, and landscape metrics were 

used in these studies to evaluate wetland area, elevation (digital elevation models), wetland edge 

(edge density), stability (aggregation index), vegetation productivity (Normalized Difference 

Vegetation Index), and vegetative quality (Floristic Quality Index) across varying restoration 

measures and scales in coastal Louisiana.  

The results show that Louisiana wetland productivity is highly associated with seasonality and 

vegetation zones, susceptible to episodic events (i.e., hurricanes and floods), and significantly 

correlated to river connectivity. This was observed under baseline conditions, post-major flood 

events, and across short and long periods of observation. Positive correlations between landscape 

stability and river influence were also observed. Likewise, carbon accumulation rates in the coastal 

zone were generally correlated to hydrogeomorphology and distinctive trends were observed within 

the Middle Coast, and Chenier and Deltaic Plains. Comparisons of carbon accumulation within 

smaller-scale assessment units revealed higher rates generally occurred in zones of high river 
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connectivity or in swamp or higher salinity tolerant marsh. Naturally occurring wetlands had 

significantly higher carbon accumulation rates than restored wetlands, though sediment diversion 

sites had significantly higher accumulation rates than all other sites. Though carbon sequestration is a 

relatively new focus of wetland restoration missions, it may prove to be a critical application for 

climate change management. 

The redistribution of berm sediments within the sediment-deprived northern Chandeleur 

Islands provided elevational lifts to existing back barrier island wetlands and shoals, and in some 

areas created new shoals in overwash- and drift-zones. Significant increases in the horizontal and 

vertical extent of existing and newly created features were largely due to the influx of high quality 

quartz sediments that were redistributed from the Eastern Barrier Berm. The redistributed sediments 

also provided island feature stability, both in the maintenance of areal extent and the quantity and 

quality of vegetation present. Across all measures, the restored wetlands that were evaluated as part 

of this study reached structural and functional equivalency to reference wetlands approximately three 

to five years after construction. With adequate maturity, the restored wetlands outperformed the 

reference wetlands, having higher percentage of land, wetland aggregation (i.e., spatial integrity), 

aboveground vegetation productivity, and floristic quality. The restored wetlands also demonstrated 

higher levels of stability, providing more resistance to disturbance events (i.e., hurricanes, inundation, 

and salinity events), and experiencing reduced levels of flux (i.e., transitional phases of invasive and 

disturbance species) during recovery periods. 

From a management standpoint the studies presented herein underscore the importance of 

high-frequency monitoring to evaluate the development, performance, and resilience of ecosystem 

restoration measures. In addition to comparisons of restored to natural wetlands, these studies 

identified unique or differing restoration applications (i.e., planting versus natural vegetation 

establishment, early versus late reestablishment of hydrologic flow, off- versus near-shore sediment 
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placement, and carbon accumulation across restoration types) to evaluate project and management 

effects on performance. These evaluations provide greater insight into, and linkages between, 

management impacts on wetland structure and function. These monitoring techniques and products 

will also serve as useful components for future inventory and gap analysis, as well as the 

development of monitoring parameters, rationale for adaptive management, and restoration 

objectives.  

The results of these studies show the combination of remotely collected and in situ data, in 

addition to derived metrics and indices, provided adequate measures of wetland performance (i.e., 

structure and function) and were able to reflect wetland resilience to, and recovery from, disturbance 

events. These combinations also demonstrate the importance of river connectivity and sedimentation 

for wetland productivity and overall spatial integrity. The placement of dredged sediment for 

ecosystem restoration was also effective in reestablishing critical wetland processes, goods, and 

services. Therefore, it is recommended that wetland creation and nearshore beneficial use of dredged 

material not only remain a primary focus of wetland restoration in Louisiana, but these applications 

should be supplemented and nourished via increased river connectivity to wetland landscapes. 

Continued evaluations of wetland productivity and landscape configuration, along with other presses 

and pulses, will provide a greater understanding of ecosystem drivers and sediment importance for 

long-term management of wetlands and coastal resources.  
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